outputs = layers.Conv2D(1, 1, activation='sigmoid')(conv9)解释
时间: 2023-12-19 11:07:57 浏览: 121
这行代码定义了一个`Conv2D`层,用于输出UNET模型的预测结果。其中,第一个参数1表示输出的通道数,即输出一个单通道的预测结果;第二个参数1表示卷积核的大小,即使用1x1的卷积核进行卷积操作;`activation='sigmoid'`表示使用sigmoid函数作为激活函数,将输出结果限制在0到1之间。
这里需要注意的是,输出的预测结果的形状与输入的标签数据的形状应该相同,即都是`(height, width, 1)`的形状。因此,在UNET模型的最后一层使用了一个单通道的`Conv2D`层,以输出对每个像素点的二分类预测。输出的结果是0到1之间的实数,可视为概率值,表示该像素点属于前景(肿瘤)的概率。
相关问题
def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 更改模型加入CBAM模块
可以尝试在每个卷积层后加入CBAM模块,CBAM模块可以用来增强模型的注意力机制。
以下是修改后的代码:
```python
from keras.layers import GlobalAveragePooling2D, Reshape, Dense, multiply, Permute
def channel_attention(input_feature, ratio=8):
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature._keras_shape[channel_axis]
shared_layer_one = Dense(channel//ratio,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
shared_layer_two = Dense(channel,
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = Reshape((1,1,channel))(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
avg_pool = shared_layer_one(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel//ratio)
avg_pool = shared_layer_two(avg_pool)
assert avg_pool._keras_shape[1:] == (1,1,channel)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = Reshape((1,1,channel))(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
max_pool = shared_layer_one(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel//ratio)
max_pool = shared_layer_two(max_pool)
assert max_pool._keras_shape[1:] == (1,1,channel)
cbam_feature = Add()([avg_pool,max_pool])
cbam_feature = Activation('sigmoid')(cbam_feature)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
def spatial_attention(input_feature):
kernel_size = 7
if K.image_data_format() == "channels_first":
channel = input_feature._keras_shape[1]
cbam_feature = Permute((2,3,1))(input_feature)
else:
channel = input_feature._keras_shape[-1]
cbam_feature = input_feature
avg_pool = Lambda(lambda x: K.mean(x, axis=3, keepdims=True))(cbam_feature)
assert avg_pool._keras_shape[-1] == 1
max_pool = Lambda(lambda x: K.max(x, axis=3, keepdims=True))(cbam_feature)
assert max_pool._keras_shape[-1] == 1
concat = Concatenate(axis=3)([avg_pool, max_pool])
assert concat._keras_shape[-1] == 2
cbam_feature = Conv2D(filters = 1,
kernel_size=kernel_size,
strides=1,
padding='same',
activation='sigmoid',
kernel_initializer='he_normal',
use_bias=False)(concat)
assert cbam_feature._keras_shape[-1] == 1
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
def CBAM(input_feature):
cbam_feature = channel_attention(input_feature)
cbam_feature = spatial_attention(cbam_feature)
return cbam_feature
def MEAN_Spot_CBAM(opt): # channel 1
inputs1 = layers.Input(shape=(42,42,1))
conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1)
bn1 = layers.BatchNormalization()(conv1)
cbam1 = CBAM(bn1)
pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(cbam1)
do1 = layers.Dropout(0.3)(pool1)
# channel 2
inputs2 = layers.Input(shape=(42,42,1))
conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2)
bn2 = layers.BatchNormalization()(conv2)
cbam2 = CBAM(bn2)
pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(cbam2)
do2 = layers.Dropout(0.3)(pool2)
# channel 3
inputs3 = layers.Input(shape=(42,42,1))
conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3)
bn3 = layers.BatchNormalization()(conv3)
cbam3 = CBAM(bn3)
pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(cbam3)
do3 = layers.Dropout(0.3)(pool3)
# merge 1
merged = layers.Concatenate()([do1, do2, do3])
# interpretation 1
merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged)
merged_cbam = CBAM(merged_conv)
merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_cbam)
flat = layers.Flatten()(merged_pool)
flat_do = layers.Dropout(0.2)(flat)
# outputs
outputs = layers.Dense(1, activation='linear', name='spot')(flat_do)
#Takes input u, v, os
model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs])
model.compile(
loss={'spot':'mse'},
optimizer=opt,
metrics={'spot':tf.keras.metrics.MeanAbsoluteError()},
)
return model
```
class BasicBlock(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1):定义的basicblock模块之后如何放到def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)后面
可以使用`BasicBlock`类来定义一个基本块模块,然后在`MEAN_Spot`函数中调用该模块。具体实现方法如下:
```python
class BasicBlock(layers.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = layers.Conv2D(out_channels, kernel_size=3, strides=stride, padding='same', use_bias=False)
self.bn1 = layers.BatchNormalization()
self.relu = layers.ReLU()
self.conv2 = layers.Conv2D(out_channels * self.expansion, kernel_size=3, strides=1, padding='same', use_bias=False)
self.bn2 = layers.BatchNormalization()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = keras.Sequential([
layers.Conv2D(out_channels * self.expansion, kernel_size=1, strides=stride, use_bias=False),
layers.BatchNormalization()
])
else:
self.shortcut = lambda x: x
def call(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x += self.shortcut(inputs)
x = self.relu(x)
return x
def MEAN_Spot(opt):
# channel 1
inputs1 = layers.Input(shape=(42, 42, 1))
inputs2 = layers.Input(shape=(42, 42, 1))
inputs3 = layers.Input(shape=(42, 42, 1))
# merge 1
inputs = layers.Concatenate()([inputs1, inputs2, inputs3])
x = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
# basic block
x = BasicBlock(3, 16)(x)
x = BasicBlock(16, 32, stride=2)(x)
x = BasicBlock(32, 64, stride=2)(x)
# global average pooling
x = layers.GlobalAveragePooling2D()(x)
# output
outputs = layers.Dense(1, activation='sigmoid')(x)
# define model
model = keras.Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
return model
```
这里我们在`MEAN_Spot`函数中使用`BasicBlock`类来构建基本块模块,并且将该模块的输出作为下一个模块的输入。最后使用全局平均池化层和全连接层得到最终的输出。
阅读全文