input_2 = keras.Input(shape=(160,)) x = keras.layers.LayerNormalization()(input_2) x = keras.layers.Reshape((160, 1))(x) x = Conv1D(filters=12, kernel_size=3, padding='causal')(x) x = tf.keras.layers.Dropout(0.4)(x) x = tcnBlock(x, 9, 3, 1) x = tcnBlock(x, 6, 3, 2) x = tcnBlock(x, 4, 3, 4) x = GlobalAveragePooling1D()(x) x = keras.layers.LayerNormalization()(x) output_2 = keras.layers.Dense(1, activation='sigmoid')(x) model2 = keras.Model(inputs=input_2, outputs=output_2) model2.summary()怎么减少显存占用
时间: 2023-10-10 20:05:56 浏览: 108
3.2.Keras实战.pptx
以下是减少显存占用的一些方法:
1. 减少 batch_size
减小 batch_size 可以减少显存的占用,但会增加训练时间。可以逐渐调整 batch_size 的大小,找到一个合适的值。
2. 减少模型参数量
可以通过减少神经网络层数、减少每层的神经元数、使用更少的卷积核等方法,减少模型参数量。
3. 使用更小的数据类型
可以使用更小的数据类型,如 float16,来存储模型参数和激活值,从而减少显存占用。
4. 释放无用的显存
在训练过程中,可能会出现一些无用的显存占用,可以通过调用 K.clear_session() 来释放这些显存。
5. 减少卷积核大小
卷积核越大,需要的显存就越多。可以适当减小卷积核大小,从而减少显存占用。
6. 使用分布式训练
使用分布式训练可以将模型参数存储在多个 GPU 上,从而减少单个 GPU 的显存占用。
阅读全文