怎么用keras实现胶囊网络
时间: 2023-06-08 07:09:03 浏览: 219
胶囊网络代码实现
5星 · 资源好评率100%
使用Keras实现胶囊网络的步骤如下:
1. 安装Capsule Layers库(pip install capsulelayers)。
2. 导入所需库(numpy,tensorflow,Keras,Capsule Layers等)。
3. 构建一个胶囊层(Capsule Layer),这里以Digit Capsule层为例:
```
from capsulelayers import CapsuleLayer, PrimaryCap, Length
class DigitCaps(CapsuleLayer):
def call(self, inputs, routing):
# input shape=[None, input_num_capsule, input_dim_capsule]
# inputs = K.expand_dims(inputs, 2)
inputs = K.tile(inputs, [1, 1, self.num_capsule, 1])
inputs = K.permute_dimensions(inputs, (0, 2, 1, 3))
# inputs shape = [None, num_capsule, input_num_capsule, input_dim_capsule]
inputs_hat = tf.scan(lambda ac, x:
K.batch_dot(x, self.W, [2, 3]),
elems=inputs,
initializer=K.zeros([self.batch_size, self.num_capsule, self.input_num_capsule]))
b = tf.zeros_like(inputs_hat[:, :, :, 0])
for i in range(self.n_routing):
# c shape=[batch_size, num_capsule, input_num_capsule]
if i < self.n_routing - 1:
c = tf.nn.softmax(b, axis=1)
# outputs shape=[None, num_capsule, output_dim_capsule]
outputs = squash(K.batch_dot(c, inputs_hat))
b += K.batch_dot(outputs, inputs_hat, [2, 3])
else:
# final round,不需要使用softmax激活函数
outputs = squash(K.batch_dot(inputs_hat, K.softmax(b, axis=1)))
return outputs
```
4. 构建主胶囊层(Primary Capsule Layer):
```
x = layers.Input(shape=input_shape)
conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)
primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')
```
5. 构建分类器(Classifier):
```
digitcaps = DigitCaps(num_capsule=n_class, dim_capsule=16, batch_size=batch_size, name='digitcaps')(primarycaps)
out_caps = Length(name='capsnet')(digitcaps)
y = layers.Input(shape=(n_class,))
masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask the output of capsule layer.
masked = Mask()(digitcaps) # Mask using the capsule with maximal length. For correct training this is important!
```
6. 编译模型并训练:
```
from keras.models import Model
from keras import optimizers
from keras import metrics
# 构建模型
model = Model(inputs=[x, y], outputs=[out_caps, masked_by_y])
# 编译模型
model.compile(optimizer=optimizers.Adam(lr=lr),
loss=[margin_loss, 'mse'],
loss_weights=[1., 0.5],
metrics={'capsnet': 'accuracy'})
# 训练模型
model.fit([x_train, y_train], [y_train, x_train], batch_size=batch_size, epochs=epochs,
validation_data=[[x_test, y_test], [y_test, x_test]])
```
我们可以根据自己的实际需求,对上述代码进行修改和优化。
阅读全文