用Python读取两份txt文档的多个坐标并计算平均误差
时间: 2024-03-27 12:35:28 浏览: 97
好的,如果是多个坐标的话,我们可以改写一下之前的代码,使用循环读取每个坐标,并计算平均误差。
以下是一个示例代码,可以读取两个txt文档中的多个坐标数据,并计算x坐标和y坐标的平均误差:
```python
import numpy as np
# 读取第一个txt文档中的坐标数据
with open('file1.txt', 'r') as f:
lines = f.readlines()
coords1 = []
for line in lines:
coord = list(map(float, line.strip().split()))
coords1.append(coord)
coords1 = np.array(coords1)
# 读取第二个txt文档中的坐标数据
with open('file2.txt', 'r') as f:
lines = f.readlines()
coords2 = []
for line in lines:
coord = list(map(float, line.strip().split()))
coords2.append(coord)
coords2 = np.array(coords2)
# 计算x坐标和y坐标的平均误差
x_err = np.abs(coords1[:, 0] - coords2[:, 0]).mean()
y_err = np.abs(coords1[:, 1] - coords2[:, 1]).mean()
print('x坐标的平均误差为:', x_err)
print('y坐标的平均误差为:', y_err)
```
其中,`for`循环可以逐个读取坐标数据,并将其添加到`coords1`和`coords2`列表中。最后使用`np.array()`函数将列表转化为numpy数组,方便计算。
需要注意的是,代码中的文件路径需要根据实际情况进行修改。
阅读全文
相关推荐


















