帮忙写一个基于pytorch的二分类一维卷积神经网络,要求卷积模块不少于4个,一维卷积和激活模块写在一起
时间: 2023-04-04 21:02:40 浏览: 107
好的,我可以回答这个问题。以下是一个基于 PyTorch 的二分类一维卷积神经网络的代码示例,其中包含了至少 4 个卷积模块和激活模块:
```python
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.relu3 = nn.ReLU()
self.conv4 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.relu4 = nn.ReLU()
self.pool = nn.MaxPool1d(kernel_size=2)
self.fc1 = nn.Linear(128 * 125, 256)
self.relu5 = nn.ReLU()
self.fc2 = nn.Linear(256, 2)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.pool(x)
x = self.conv4(x)
x = self.relu4(x)
x = self.pool(x)
x = x.view(-1, 128 * 125)
x = self.fc1(x)
x = self.relu5(x)
x = self.fc2(x)
x = self.softmax(x)
return x
```
这个模型包含了 4 个卷积模块和激活模块,每个卷积模块后面都跟着一个 ReLU 激活函数。模型的最后一层是一个 Softmax 函数,用于将输出转换为概率分布。
阅读全文