np.delete(data,index2,axis=0)
时间: 2024-05-21 10:11:30 浏览: 130
This function removes the rows specified by the index2 parameter from the data array along the axis specified by the axis parameter (axis=0 means removing rows, axis=1 means removing columns). The modified data array is returned.
相关问题
请问应该在python中导入什么库运行下列代码:def createSpec(data): fs=256 lowcut=117 highcut=123 y=butter_bandstop_filter(data, lowcut, highcut, fs, order=6) lowcut=57 highcut=63 y=butter_bandstop_filter(y, lowcut, highcut, fs, order=6) cutoff=1 y=butter_highpass_filter(y, cutoff, fs, order=6) Pxx=signal.spectrogram(y, nfft=256, fs=256, return_onesided=True, noverlap=128)[2] Pxx = np.delete(Pxx, np.s_[117:123+1], axis=0) Pxx = np.delete(Pxx, np.s_[57:63+1], axis=0) Pxx = np.delete(Pxx, 0, axis=0) result=(10*np.log10(np.transpose(Pxx))-(10*np.log10(np.transpose(Pxx))).min())/(10*np.log10(np.transpose(Pxx))).ptp() return result
您需要导入以下库:
import numpy as np
from scipy import signal
并且需要使用如下代码来定义butter_bandstop_filter和butter_highpass_filter两个函数:
def butter_bandstop_filter(data, lowcut, highcut, fs, order=5):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = signal.butter(order, [low, high], btype='bandstop')
y = signal.filtfilt(b, a, data)
return y
def butter_highpass_filter(data, cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='highpass')
y = signal.filtfilt(b, a, data)
return y
接下来,您可以直接使用上述代码中的createSpec函数。
f = open('G:\jiont\比赛数据2022\charging_data79.csv', encoding='utf-8') data = pd.DataFrame(pd.read_csv(f, encoding='utf-8-sig', low_memory=False)) soc = np.array(data['standard_soc']) # 放电深度DoD current = np.array(data['total_current']) current = [ float(x)/10 for x in current ] all_vol = np.array(data['cell_volt_list']) mileage = np.array(data['mileage']) mileage = [ float(x)/10 for x in mileage ] all_sig_data = cycle_sig(all_vol) all_sig_data = clean_data(all_sig_data) def split_chargedata(chargr_data): a_data = [] all_data = [] for index, m in enumerate(mileage): if index + 1 < len(mileage): if m == mileage[index + 1]: a_data.append(chargr_data[index]) else: a_data.append(chargr_data[index]) all_data.append(a_data) a_data = [] else: all_data.append(a_data) return all_data all_charge_data = split_chargedata(all_sig_data) all_charge_current = split_chargedata(current) all_charge_soc = split_chargedata(soc) dod1 = [] for t in all_charge_soc: dod1.append(t[-1]-t[0]) ind = [] for ind1, t in enumerate(dod1): if t<10: ind.append(ind1) all_charge_data = np.delete(all_charge_data, ind, axis=0) all_charge_current = np.delete(all_charge_current, ind, axis=0) all_charge_soc = np.delete(all_charge_soc, ind, axis=0) ind9 = [5, 13, 25, 35, 47, 55, 81, 84, 86, 88, 89, 92, 94, 101, 111, 115, 116, 126, 157, 162, 167, 174, 180, 198, 200, 216, 237, 245, 261] all_charge_data = np.delete(all_charge_data, ind9, axis=0) all_charge_current = np.delete(all_charge_current, ind9, axis=0) all_charge_soc = np.delete(all_charge_soc, ind9, axis=0)
这段代码主要进行了一些数据处理的操作,包括:
1. 读取CSV文件中的数据,将SOC、电流、电压等数据存储到NumPy数组中。
2. 对电压数据进行了一些处理,使用了`cycle_sig`和`clean_data`函数。
3. 定义了`split_chargedata`函数,用于将数据按照里程数进行拆分,生成二维列表,其中每个子列表代表一次充电过程中的数据。
4. 使用`split_chargedata`函数对SOC、电流和电压数据进行拆分。
5. 计算了每个充电过程的DoD,并将DoD小于10%的充电过程的索引记录在`ind`列表中。
6. 使用`np.delete`函数删除`ind`列表中的充电过程对应的SOC、电流和电压数据。
7. 还对一些其他的充电过程进行了删除操作,对应的索引记录在`ind9`列表中。
总体来说,这段代码的作用是对充电数据进行了一些清洗和处理,去除了一些异常数据和不需要的充电过程。
阅读全文
相关推荐

















