用pytorch生成一个5层一维卷积神经网络,要求第一层卷积层输入特征数为41,卷积核为3
时间: 2023-05-25 16:06:26 浏览: 79
卷积神经网络基础 pytorch
以下是生成一个5层一维卷积神经网络的代码,其中第一层卷积层输入特征数为41,卷积核为3:
```python
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv1d(41, 32, kernel_size=3),
nn.BatchNorm1d(32),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
self.layer2 = nn.Sequential(
nn.Conv1d(32, 64, kernel_size=3),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
self.layer3 = nn.Sequential(
nn.Conv1d(64, 128, kernel_size=3),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
self.layer4 = nn.Sequential(
nn.Conv1d(128, 256, kernel_size=3),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
self.layer5 = nn.Sequential(
nn.Conv1d(256, 512, kernel_size=3),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.MaxPool1d(kernel_size=2))
self.fc = nn.Linear(512, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在这个神经网络中,每一层都包含了一个卷积层、一个批量归一化层、一个ReLU激活函数和一个最大池化层。其中,第一层卷积层的输入特征数为41,卷积核大小为3。最后,有一个全连接层将特征图转换为类别预测。
阅读全文