我有路面txt点云文件,需要先提取边界,然后对边界线形进行3次样条拟合得到圆滑曲线,数据不适用于Convex Hull算法,最后将其可视化,求代码
时间: 2024-02-01 10:04:06 浏览: 148
针对您的需求,可以使用以下步骤实现:
1. 读取txt点云文件,将其转换为numpy数组。
```python
import numpy as np
data = np.loadtxt('path/to/pointcloud.txt')
```
2. 对点云进行边界提取,可以使用alpha shapes算法或者concave hull算法。
```python
from scipy.spatial import Delaunay
from skgeom import alpha_shapes
tri = Delaunay(data)
alpha_shape = alpha_shapes.alpha_shape_auto(data, tri.vertices, alpha=2.0)
boundary = alpha_shape.boundary
```
3. 对边界线形进行3次样条拟合得到圆滑曲线,可以使用scipy库中的splrep和splev函数。
```python
from scipy.interpolate import splprep, splev
tck, u = splprep(boundary.T, s=0, k=3)
u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new = splev(u_new, tck)
# 此时x_new和y_new即为拟合后的圆滑曲线
```
4. 将拟合后的曲线进行可视化,可以使用matplotlib库。
```python
import matplotlib.pyplot as plt
# 将点云和边界线形可视化
plt.figure(figsize=(8, 8))
plt.scatter(data[:, 0], data[:, 1], s=1)
plt.plot(boundary[:, 0], boundary[:, 1], color='r', linewidth=2)
# 将拟合后的曲线可视化
plt.plot(x_new, y_new, color='g', linewidth=2)
plt.show()
```
完整代码示例:
```python
import numpy as np
from scipy.spatial import Delaunay
from skgeom import alpha_shapes
from scipy.interpolate import splprep, splev
import matplotlib.pyplot as plt
# 读取txt点云文件
data = np.loadtxt('path/to/pointcloud.txt')
# 边界提取
tri = Delaunay(data)
alpha_shape = alpha_shapes.alpha_shape_auto(data, tri.vertices, alpha=2.0)
boundary = alpha_shape.boundary
# 3次样条拟合得到圆滑曲线
tck, u = splprep(boundary.T, s=0, k=3)
u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new = splev(u_new, tck)
# 可视化
plt.figure(figsize=(8, 8))
plt.scatter(data[:, 0], data[:, 1], s=1)
plt.plot(boundary[:, 0], boundary[:, 1], color='r', linewidth=2)
plt.plot(x_new, y_new, color='g', linewidth=2)
plt.show()
```
阅读全文