the self-attended weights
时间: 2024-05-26 14:10:28 浏览: 85
of transformer model are used to do what?(注意回答问题要尽量简洁明了)
The self-attended weights of transformer model are used to capture the relationship between different words in the input sequence.
相关问题
python语言实现multi-head-self-attention示例的代码:
### 回答1:
以下是一个 Python 代码示例,用于实现 multi-head self-attention:
```python
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.depth = d_model // num_heads
self.query_linear = nn.Linear(d_model, d_model)
self.key_linear = nn.Linear(d_model, d_model)
self.value_linear = nn.Linear(d_model, d_model)
self.output_linear = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size()
# Linear transformations
query = self.query_linear(query)
key = self.key_linear(key)
value = self.value_linear(value)
# Split into heads
query = query.view(batch_size * self.num_heads, -1, self.depth)
key = key.view(batch_size * self.num_heads, -1, self.depth)
value = value.view(batch_size * self.num_heads, -1, self.depth)
# Transpose for matrix multiplication
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# Calculate scores
scores = torch.matmul(query, key.transpose(-2, -1))
scores = scores / torch.sqrt(torch.tensor(self.depth).float())
# Apply mask (if provided)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == , -1e9)
# Softmax
attention_weights = nn.Softmax(dim=-1)(scores)
# Dropout
attention_weights = nn.Dropout(p=.1)(attention_weights)
# Multiply by values
context = torch.matmul(attention_weights, value)
# Reshape and concatenate
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.depth)
# Linear transformation
output = self.output_linear(context)
return output
```
希望对你有所帮助!
### 回答2:
下面是使用Python语言实现multi-head self-attention的一个示例代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadSelfAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadSelfAttention, self).__init__()
self.num_heads = num_heads
self.d_head = d_model // num_heads
self.fc_query = nn.Linear(d_model, d_model)
self.fc_key = nn.Linear(d_model, d_model)
self.fc_value = nn.Linear(d_model, d_model)
self.fc_concat = nn.Linear(d_model, d_model)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
h = self.num_heads
# Split input into multiple heads
query = self.fc_query(x).view(batch_size, seq_len, h, self.d_head)
key = self.fc_key(x).view(batch_size, seq_len, h, self.d_head)
value = self.fc_value(x).view(batch_size, seq_len, h, self.d_head)
# Compute attention scores
scores = torch.matmul(query, key.transpose(-2, -1)) / (self.d_head ** 0.5)
attn_weights = F.softmax(scores, dim=-1)
# Apply attention weights to value vectors
attended_values = torch.matmul(attn_weights, value)
attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, seq_len, -1)
# Concatenate and linearly transform attended values
output = self.fc_concat(attended_values)
return output
# 使用示例
d_model = 128
num_heads = 8
seq_len = 10
batch_size = 4
input_tensor = torch.randn(batch_size, seq_len, d_model)
attention = MultiHeadSelfAttention(d_model, num_heads)
output = attention(input_tensor)
print("Input Shape: ", input_tensor.shape)
print("Output Shape: ", output.shape)
```
上述代码定义了一个`MultiHeadSelfAttention`的类,其中`forward`函数实现了multi-head self-attention的计算过程。在使用示例中,我们输入一个大小为`(batch_size, seq_len, d_model)`的张量,经过multi-head self-attention计算后输出一个大小为`(batch_size, seq_len, d_model)`的张量。其中`d_model`表示输入的特征维度,`num_heads`表示attention头的数量。
### 回答3:
下面是使用Python实现multi-head self-attention示例的代码:
```python
import torch
import torch.nn as nn
class MultiHeadSelfAttention(nn.Module):
def __init__(self, embed_size, num_heads):
super(MultiHeadSelfAttention, self).__init__()
self.embed_size = embed_size
self.num_heads = num_heads
self.head_size = embed_size // num_heads
self.query = nn.Linear(embed_size, embed_size)
self.key = nn.Linear(embed_size, embed_size)
self.value = nn.Linear(embed_size, embed_size)
self.out = nn.Linear(embed_size, embed_size)
def forward(self, x):
batch_size, seq_len, embed_size = x.size()
# Split the embedding into num_heads and reshape
x = x.view(batch_size, seq_len, self.num_heads, self.head_size)
x = x.permute(0, 2, 1, 3)
# Apply linear transformations to obtain query, key, and value
query = self.query(x)
key = self.key(x)
value = self.value(x)
# Compute scaled dot product attention scores
scores = torch.matmul(query, key.permute(0, 1, 3, 2))
scores = scores / self.head_size**0.5
# Apply softmax to obtain attention probabilities
attn_probs = nn.Softmax(dim=-1)(scores)
# Apply attention weights to value and sum across heads
attended = torch.matmul(attn_probs, value)
attended = attended.permute(0, 2, 1, 3)
attended = attended.contiguous().view(batch_size, seq_len, self.embed_size)
# Apply output linear transformation
output = self.out(attended)
return output
```
上述代码中定义了一个名为MultiHeadSelfAttention的类,继承自nn.Module,可以通过指定嵌入大小(embed_size)和头部数量(num_heads)来创建多头自注意力层。在前向传播方法forward中,先通过线性变换将输入张量分别变换为查询(query)、键(key)和值(value)张量。然后计算缩放点积注意力得分,将其作为注意力概率经过softmax函数进行归一化。通过注意力概率权重对值进行加权求和,并应用线性变换得到最终的输出张量。最后返回输出张量。
C2f-CloAtt
C2f-CloAtt(Continuous Convolutional Feature Attention)是一种用于计算机视觉领域的注意力机制,它结合了卷积神经网络(CNNs)和自注意力(Self-Attention)。该模型主要用于提升图像分类、物体检测以及其他视觉任务中的特征学习能力,特别强调对输入图像不同区域的局部特征进行动态加权。
C2f-CloAtt的核心思想是在卷积层之后引入自注意力模块,允许网络关注输入的不同部分,而不仅仅是固定的局部感受野。这通常通过计算每个位置的特征向量与全局特征之间的相似度来实现,然后使用softmax函数转换为注意力权重,最后这些权重被用来加权不同位置的特征。
具体实现可能包括以下几个步骤:
1. **卷积层**:首先,使用传统的卷积层提取图像的局部特征。
```python
feats = conv_layer(input_image)
```
2. **特征映射**:将卷积层得到的特征展开成一维向量,以便于计算注意力。
```python
feats_1d = feats.reshape(-1, feats.shape[-1])
```
3. **注意力计算**:利用全连接层计算每个位置与全局特征的相似性,形成注意力分布。
```python
attention_weights = softmax(dot_product(feats_1d, global_avg_pool(feats)))
```
4. **加权融合**:将注意力分配给原始特征并进行加权平均,以增强重要的特征。
```python
attended_feats = attention_weights * feats_1d
enhanced_feats = attended_feats.sum(axis=0)
```
5. **最终输出**:将增强后的特征馈送到后续的网络层,如池化层或全连接层,进行分类或定位任务。
阅读全文