能否生成transformer的torch代码
时间: 2023-08-13 10:53:32 浏览: 68
当然可以!以下是一个简单的示例代码,用于生成一个基本的Transformer模型:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.position_encoding = PositionalEncoding(hidden_dim)
self.encoder = Encoder(hidden_dim, num_heads, num_layers)
self.decoder = Decoder(hidden_dim, num_heads, num_layers)
self.fc = nn.Linear(hidden_dim, input_dim)
def forward(self, x):
x = self.embedding(x)
x = self.position_encoding(x)
encoded = self.encoder(x)
decoded = self.decoder(encoded)
output = self.fc(decoded)
return output
class PositionalEncoding(nn.Module):
def __init__(self, hidden_dim, max_length=5000):
super(PositionalEncoding, self).__init__()
self.hidden_dim = hidden_dim
pe = torch.zeros(max_length, hidden_dim)
position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * math.sqrt(self.hidden_dim)
x = x + self.pe[:x.size(0), :]
return x
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads
self.query_linear = nn.Linear(hidden_dim, hidden_dim)
self.key_linear = nn.Linear(hidden_dim, hidden_dim)
self.value_linear = nn.Linear(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, hidden_dim)
def forward(self, query, key, value):
batch_size = query.size(0)
query = self.query_linear(query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
key = self.key_linear(key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
value = self.value_linear(value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim)
attention_weights = F.softmax(scores, dim=-1)
attended_values = torch.matmul(attention_weights, value)
attended_values = attended_values.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_dim)
output = self.fc(attended_values)
return output
class FeedForward(nn.Module):
def __init__(self, hidden_dim, feedforward_dim):
super(FeedForward, self).__init__()
self.fc1 = nn.Linear(hidden_dim, feedforward_dim)
self.fc2 = nn.Linear(feedforward_dim, hidden_dim)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
class Encoder(nn.Module):
def __init__(self, hidden_dim, num_heads, num_layers):
super(Encoder, self).__init__()
self.layers = nn.ModuleList([EncoderLayer(hidden_dim, num_heads) for _ in range(num_layers)])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(EncoderLayer, self).__init__()
self.multihead_attention = MultiHeadAttention(hidden_dim, num_heads)
self.feedforward = FeedForward(hidden_dim, hidden_dim)
def forward(self, x):
attended = self.multihead_attention(x, x, x)
encoded = attended + x
output = self.feedforward(encoded)
output = output + encoded
return output
class Decoder(nn.Module):
def __init__(self, hidden_dim, num_heads, num_layers):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(hidden_dim, num_heads) for _ in range(num_layers)])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class DecoderLayer(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(DecoderLayer, self).__init__()
self.masked_multihead_attention = MultiHeadAttention(hidden_dim, num_heads)
self.multihead_attention = MultiHeadAttention(hidden_dim, num_heads)
self.feedforward = FeedForward(hidden_dim, hidden_dim)
def forward(self, x):
masked_attended = self.masked_multihead_attention(x, x, x)
attended = self.multihead_attention(masked_attended, x, x)
encoded = attended + x
output = self.feedforward(encoded)
output = output + encoded
return output
```
这是一个简单的Transformer模型实现,包括位置编码、多头注意力机制、前馈神经网络等组件。你可以根据需要进行修改和扩展。
阅读全文