pytorch自己搭建transformer
时间: 2023-07-30 19:10:00 浏览: 117
要自己搭建一个Transformer模型,你可以使用PyTorch框架来实现。下面是一个简单的示例代码:
首先,导入所需的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
定义一个Transformer模型的主体部分,包括多头注意力机制和前馈神经网络:
```python
class Transformer(nn.Module):
def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
super(Transformer, self).__init__()
self.embed_dim = hidden_dim
self.num_layers = num_layers
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.positional_encoding = PositionalEncoding(hidden_dim)
self.encoder_layers = nn.ModuleList([EncoderLayer(hidden_dim, num_heads) for _ in range(num_layers)])
def forward(self, src):
src = self.embedding(src)
src = self.positional_encoding(src)
for layer in self.encoder_layers:
src = layer(src)
return src
```
定义位置编码部分:
```python
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return x
```
定义多头注意力机制部分:
```python
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads
self.query = nn.Linear(hidden_dim, hidden_dim)
self.key = nn.Linear(hidden_dim, hidden_dim)
self.value = nn.Linear(hidden_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, hidden_dim)
def forward(self, query, key, value):
batch_size = query.size(0)
query = self.query(query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
key = self.key(key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
value = self.value(value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim)
attention_weights = F.softmax(scores, dim=-1)
x = torch.matmul(attention_weights, value)
x = x.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_dim)
x = self.fc(x)
return x
```
定义Transformer的编码器层:
```python
class EncoderLayer(nn.Module):
def __init__(self, hidden_dim, num_heads):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(hidden_dim, num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(hidden_dim, 4 * hidden_dim),
nn.ReLU(),
nn.Linear(4 * hidden_dim, hidden_dim)
)
self.norm1 = nn.LayerNorm(hidden_dim)
self.norm2 = nn.LayerNorm(hidden_dim)
def forward(self, x):
attended = self.attention(x, x, x)
x = self.norm1(x + attended)
fed_forward = self.feed_forward(x)
x = self.norm2(x + fed_forward)
return x
```
这些代码定义了一个简单的Transformer模型,包括位置编码、多头注意力机制和前馈神经网络。你可以根据你的需求进行修改和扩展。
阅读全文