num = 10 num_str = str(num) print(type(num_str)) # 输出:<class 'str'> 为什么会出现class

时间: 2024-04-09 14:27:27 浏览: 9
在 Python 中,`class` 是用于定义类的关键字。当我们使用 `type()` 函数打印一个对象的类型时,返回的结果会包含 `class` 关键字。 在你提供的代码中,`type(num_str)` 返回的结果是 `<class 'str'>`,表示 `num_str` 的类型是字符串类型 (`str`)。这里的 `<class 'str'>` 是为了明确告诉我们 `num_str` 是一个字符串对象,由 `str` 类创建。 总结起来,`class` 关键字在 `type()` 打印类型时用于标识所打印的结果是一个类对象。
相关问题

num = 10 num_str = str(num) print(type(num_str)) # 输出:<class 'str'>

对于给定的代码,`num` 是一个整数变量,其值为 10。然后,使用 `str()` 函数将 `num` 转换为字符串类型,并将结果赋值变量 `num_str`。 因此,`_str` 的值是字符串类型的 "10。通过 `print(type(num_str))`,我们可以打印出 `num_str` 的类型,它会输出 `<class 'str'>`,表示 `num_str` 是字符串类型。

num = 10 num_str = str(num) print(type(num_str)) # 输出:<class 'str'> 为什么会出现' '

当将一个整数 `num` 转换为字符串时,使用 `str()` 函数将其转换为字符串类型。在 Python 中,字符串类型被表示为带有引号的字符序列。 在你的代码中,`num_str = str(num)` 语句将整数 `num` 转换为字符串,并将其赋值给变量 `num_str`。当你打印 `type(num_str)` 的结果时,显示的是 `<class 'str'>`,其中的引号表示该结果是字符串类型。 所以,`' '` 并不是实际的输出。如果你的代码中出现了 `' '`,可能是由于你在输出语句中添加了额外的引号或空格。请检查你的代码并确保输出语句正确地打印了变量 `num_str` 的类型。

相关推荐

代码改错#include <iostream> #include <string.h> #include <stdio.h> using namespace std; class String { public: String() {} String(char str[20]); char Str[20]; friend istream& operator>>(istream& in, String& s); friend ostream& operator<<(ostream& out, String& s); }; String::String(char str[20]) { size_t len = strlen(str); strcpy_s(Str,len, str); } istream& operator>>(istream& in, String& s) { char p[20]; in.getline(p, 20); size_t len = strlen(p); strcpy_s(s.Str,len, p); return in; } ostream& operator<<(ostream& out, String& s) { out << s.Str; return out; } template<class TNo, class TScore, int num>//TNo和TScore为参数化类型 class Student { private: TNo StudentID; //参数化类型,存储姓名 TScore score[num]; //参数化类型数组,存储num门课程的分数 public: void Input();//数据的录入 TScore MaxScore(); //查找score的最大值并返回该值 void Update(TScore sscore, int i);//更新学生的第i门课程成绩为sscore void SelectSort(); //采用选择排序法对学生成绩进行升序排列 void Print(); //输出所有学生的信息 }; template<class TNo, class TScore, int num> void Student<TNo,TScore,num>::Input() { cin >> StudentID; for (int i = 0; i < 3; i++) { cin >> score[i]; } } template<class TNo, class TScore, int num> TScore Student<TNo, TScore, num>::MaxScore() { TScore x = 0; if (num != 0) { for (int i = 0; i < num; i++) { if (score[i] > x) { x = score[i]; } } } return x; } template<class TNo, class TScore, int num> void Student<TNo, TScore, num>::Update(TScore sscore, int i) { if (i >= 0 && i < num) { score[i] = sscore; } } template<class TNo, class TScore, int num> void Student<TNo, TScore, num>::SelectSort() { for (int i = 0; i < num; i++) { TScore a = score[i]; for (int j = i; i < num; j++) { if (score[i] < a) { a = score[i]; } } score[i] = a; } } template<class TNo, class TScore, int num> void Student<TNo, TScore, num>::Print() { cout << MaxScore() << endl; cout << StudentID << "\t"; cout << score; } int main(void) { Student <String, float, 3> s; s.Input(); s.SelectSort(); s.Print(); return 0; }

请将如下的matlab代码转为python代码,注意使用pytorch框架实现,并对代码做出相应的解释:function [nets,errors]=BPMLL_train(train_data,train_target,hidden_neuron,alpha,epochs,intype,outtype,Cost,min_max) rand('state',sum(100clock)); if(nargin<9) min_max=minmax(train_data'); end if(nargin<8) Cost=0.1; end if(nargin<7) outtype=2; end if(nargin<6) intype=2; end if(nargin<5) epochs=100; end if(nargin<4) alpha=0.05; end if(intype==1) in='logsig'; else in='tansig'; end if(outtype==1) out='logsig'; else out='tansig'; end [num_class,num_training]=size(train_target); [num_training,Dim]=size(train_data); Label=cell(num_training,1); not_Label=cell(num_training,1); Label_size=zeros(1,num_training); for i=1:num_training temp=train_target(:,i); Label_size(1,i)=sum(temp==ones(num_class,1)); for j=1:num_class if(temp(j)==1) Label{i,1}=[Label{i,1},j]; else not_Label{i,1}=[not_Label{i,1},j]; end end end Cost=Cost2; %Initialize multi-label neural network incremental=ceil(rand100); for randpos=1:incremental net=newff(min_max,[hidden_neuron,num_class],{in,out}); end old_goal=realmax; %Training phase for iter=1:epochs disp(strcat('training epochs: ',num2str(iter))); tic; for i=1:num_training net=update_net_ml(net,train_data(i,:)',train_target(:,i),alpha,Cost/num_training,in,out); end cur_goal=0; for i=1:num_training if((Label_size(i)~=0)&(Label_size(i)~=num_class)) output=sim(net,train_data(i,:)'); temp_goal=0; for m=1:Label_size(i) for n=1:(num_class-Label_size(i)) temp_goal=temp_goal+exp(-(output(Label{i,1}(m))-output(not_Label{i,1}(n)))); end end temp_goal=temp_goal/(mn); cur_goal=cur_goal+temp_goal; end end cur_goal=cur_goal+Cost0.5(sum(sum(net.IW{1}.*net.IW{1}))+sum(sum(net.LW{2,1}.*net.LW{2,1}))+sum(net.b{1}.*net.b{1})+sum(net.b{2}.*net.b{2})); disp(strcat('Global error after ',num2str(iter),' epochs is: ',num2str(cur_goal))); old_goal=cur_goal; nets{iter,1}=net; errors{iter,1}=old_goal; toc; end disp('Maximum number of epochs reached, training process completed');

这段代码没进 thing1()的原因 class Worker(QtCore.QThread): sinOut = pyqtSignal(str) def __init__(self, parent=None): super(Worker, self).__init__(parent) # 设置工作状态与初始num数值 self.working = True self.num = 0 #def __del__(self): # 线程状态改变与线程终止 #self.working = False #self.wait() def stop(self): #线程状态改变与线程终止 self.working = False self.wait() def run(self): self.working = True while self.working == True: #file_str = 'File index{0}'.format(self.num) self.num += 1 # 发射信号 #self.sinOut.emit(file_str) self.sinOut.emit('1') # 线程休眠2秒 self.msleep(5) class parentWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.main_ui = JQ.Ui_MainWindow() self.main_ui.setupUi(self) self.thread1 = Worker() self.main_ui.pushButton_2.clicked.connect(self.thing1) self.thread1.sinOut.connect(self.printt) def thing1(self): #self.main_ui.pushButton.setEnabled(False) print('9999999999') self.thread1.start() self.thread1.wait() print('123') #self.sleep(2) def printt(self): print('7777') def ok(): print('ok') # def hourstest(): # thread1 = Worker() # thread1.start() # com = JQ.Ui_MainWindow().comboBox_2.currentText() # ser = serial.Serial('com3', 1200, timeout=1) # data = bytes.fromhex( # '68 01 00 20 00 00 00 00 00 34 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 33 F4 16 ') # ser.write(data) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) widget = QtWidgets.QMainWindow() widget = parentWindow() ui = JQ.Ui_MainWindow() # 这是原py中的类,因人而异哦 ui.setupUi(widget) ui.discoverSerial() #串口发现 #ui.pushButton_2.clicked.connect(widget.thing1) widget.show() sys.exit(app.exec_())

优化该代码class Path(object): def __init__(self,path,cost1,cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, price1,price2): return Path(self.__path+[node],self.__cost1+ price1,self.__cost2+ price2) #输出当前路径 def printPath(self): global num #将num作为循环次数,即红绿灯数量 global distance num = 0 for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) distance = self.__cost1 #获取路径总成本的只读属性 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): #current = path[-1] current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: #if n not in path: if n not in path.path: #self.__generatePath(graph, path + [n], end, results) self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][0],self.__graph[path.getLastNode()][n][1]),end, results) #self.__generatePath(graph,使其能够保存输入记录并且能够查询和显示

import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码

最新推荐

recommend-type

基于 Java 实现的打砖块游戏【安卓传感器开发课程实验】

【作品名称】:基于 Java 实现的打砖块游戏【安卓传感器开发课程实验】 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:打砖块游戏,安卓传感器开发课程实验
recommend-type

HTML+CSS+JS+JQ+Bootstrap的服务信息展示响应式手机网页模板.7z

解锁网页开发秘籍,这套源码集成了HTML的结构力量、CSS的视觉魔法、JavaScript的交互智慧、jQuery的效率工具箱及Bootstrap的响应式盔甲。从基础搭建到动态交互,一步到位。 HTML筑基,强化网页骨络; CSS妆点,让设计灵动多彩; JavaScript驱动,实现页面互动; jQuery加持,简化操作,加速开发; Bootstrap响应,适配多端,无缝浏览。 无论你是编程新手还是高手,这份资源都能带你深入前端世界的核心,实践中学以致用,创造既美观又强大的网页作品。立刻行动,激发你的前端创造力!
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型