class NumberPrinter: def __init__(self, start, end): self.start = start self.end = end def print_numbers(self): numbers = [] for num in range(self.start, self.end + 1): if num % 10 != 3 and num % 3 != 0: numbers.append(str(num)) result = ' '.join(numbers) print(result) printer = NumberPrinter(1, 100) printer.print_numbers()优化一下
时间: 2024-04-11 10:26:23 浏览: 62
下面是对代码进行了一些优化的版本:
```python
class NumberPrinter:
def __init__(self, start, end):
self.start = start
self.end = end
def print_numbers(self):
numbers = [str(num) for num in range(self.start, self.end + 1) if num % 10 != 3 and num % 3 != 0]
result = ' '.join(numbers)
print(result)
printer = NumberPrinter(1, 100)
printer.print_numbers()
```
在这个优化的版本中,使用了列表推导式来构建满足条件的数字列表,避免了使用显式的循环和条件判断。这样可以更简洁地生成数字列表。其余部分与之前的实现相同。
相关问题
编写一个类装饰器,用于计算被装饰函数的执行时间。 class MeasureTime: def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): start_time = time.time() result = self.func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time print(f"Method {self.func.__name__} executed in {execution_time:.4f} seconds.") return result
非常好的问题!你的问题提供了一个很好的示例,可以向其他人展示如何编写类装饰器。下面是一个示例代码,演示了如何使用类装饰器来测量函数的执行时间:
```
import time
class MeasureTime:
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
start_time = time.time()
result = self.func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f"Method {self.func.__name__} executed in {execution_time:.4f} seconds.")
return result
@MeasureTime
def my_function():
time.sleep(1)
my_function()
```
在这个例子中,我们定义了一个名为`MeasureTime`的装饰器类,它采用一个函数作为其唯一参数。在`__call__`方法中,我们记录了函数执行的开始时间和结束时间,并计算了函数的执行时间。最后,我们打印出函数的名称和执行时间,并返回函数的结果。
在我们的示例中,我们使用`@MeasureTime`语法将`MeasureTime`类应用于`my_function`函数。这意味着当我们调用`my_function`时,实际上会调用`MeasureTime`的`__call__`方法,该方法会测量函数的执行时间并打印出结果。
希望这个示例可以帮助你理解类装饰器的工作原理!
import random class Path(): def __init__(self, path, cost): self.__path = path self.__cost = cost # 获取路径上最后一个节点(T) def getLastNode(self): return self.__path[-1] # 获取路径的只读属性 @property def path(self): #这个函数有什么用 return self.__path # 判断node是否为最后一个节点 def isLastNode(self, node): return node == self.getLastNode() # 增加节点和成本 def addNode(self, node, price): return Path(self.__path+[node], self.__cost+price) # 输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(n): print(n) else: print(n, end="-->") print("Cost is: "+str(self.__cost)) # 获取成本的只读属性 @property def travelCost(self): return self.__cost class DirectedGraph(): def __init__(self,d): self.__graph = d def __generatePath(self, graph, path, end, results, costIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n, self.__graph[path.getLastNode()][n][costIndex]), end , results, costIndex) # 搜索start到end之间时间或空间的最短路径,并输出 def searchPath(self, start, end): self._results = [] self.__generatePath(self.__graph, Path([start], 0), end,self._results) self._results.sort(key=lambda x: len(x)) # 调用searchPath搜索start到end之间空间最短的路径,并输出 def searchMinPath(self, start, end): self.searchPath(start, end) print("共有{}条路径".format(len(self._results))) # 计算路径数 for path in self._results: #print(path) distance = 0 light_points=0 time = 0 for i in range(len(path) - 1): point1 = self.__graph[path[i]] point2 = point1[path[i + 1]] distance += point2[0] time += (point2[0]/point2[1]) light_points+=point2[2] path.append(distance) path.append(light_points)
这段代码定义了两个类:`Path`和`DirectedGraph`。其中,`Path`类用于表示图中的一个路径,`DirectedGraph`类用于表示有向图。
`Path`类有以下方法:
- `__init__(self, path, cost)`:类的构造函数,用于初始化路径和成本。
- `getLastNode(self)`:获取路径上最后一个节点。
- `path(self)`:获取路径的只读属性。
- `isLastNode(self, node)`:判断node是否为最后一个节点。
- `addNode(self, node, price)`:增加节点和成本。
- `printPath(self)`:输出当前路径。
- `travelCost(self)`:获取成本的只读属性。
`DirectedGraph`类有以下方法:
- `__init__(self,d)`:类的构造函数,用于初始化有向图。
- `__generatePath(self, graph, path, end, results, costIndex)`:生成从起点到终点的所有路径。
- `searchPath(self, start, end)`:搜索从起点到终点的所有路径,并将结果存储在`_results`列表中。
- `searchMinPath(self, start, end)`:搜索从起点到终点的所有路径,并输出最短路径的长度和路径上的节点。
在`searchMinPath`方法中,首先调用`searchPath`方法搜索从起点到终点的所有路径,并将结果存储在`_results`列表中。然后,对于每一条路径,遍历路径上相邻的两个节点,计算两个节点之间的距离、时间和灯光点数,并将这些信息存储在路径对象中。最后,输出所有路径的数量和最短路径的长度和路径上的节点。
阅读全文