对随机森林模型进行调参绘制学习曲线
时间: 2023-07-10 13:10:19 浏览: 170
好的,我可以帮你解答这个问题。针对随机森林模型进行调参可以选择以下几个超参数:n_estimators(决策树的数量)、max_depth(决策树的最大深度)、min_samples_split(节点分裂所需的最小样本数)和min_samples_leaf(叶节点所需最小样本数)。接下来我会为你介绍如何通过绘制学习曲线来选择最优的模型超参数。
首先,我们需要导入需要用到的库和数据集。以 iris 数据集为例:
```python
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import learning_curve
import matplotlib.pyplot as plt
iris = load_iris()
X, y = iris.data, iris.target
```
接下来,我们需要定义一个函数来绘制学习曲线。这个函数会根据不同的超参数值,计算训练集和交叉验证集的得分,并绘制学习曲线。
```python
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
```
接下来,我们可以调用上面的函数,绘制学习曲线。
```python
title = "Learning Curves (Random Forest, n_estimators = %d)" % n_estimators
estimator = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth,
min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf)
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
plt.show()
```
在这个例子中,我们选择 n_estimators,max_depth,min_samples_split 和 min_samples_leaf 四个超参数进行调参。我们可以通过不断更改这些超参数的值,来观察学习曲线的变化,选择最优的超参数值。
希望这个回答能对你有所帮助。
阅读全文