function probabolity(N,i) PF=p(N-i)/Psum;%适应度概率 disp(PF); for jj=1:N distance(jj)=abs(P(jj)-P(i)); end num=0; for ii=1:N if distance(ii)<minD num=num+1; end end PD=num/N; %个体浓度 PR=a*PF+(1-a)*PD; %替换概率 end end

时间: 2024-04-13 18:26:05 浏览: 4
这段代码是一个函数,用于计算个体的适应度概率PF、个体浓度PD和替换概率PR。 函数名为`probability`,接受两个参数:`N`表示总粒子数,`i`表示当前粒子的索引。 在函数内部,首先计算适应度概率PF。根据代码`PF=p(N-i)/Psum`,将个体最优适应度值p(N-i)除以个体最优适应度值之和Psum,得到适应度概率PF。 接下来,使用循环计算当前粒子与其他粒子之间的距离。通过代码`for jj=1:N; distance(jj)=abs(P(jj)-P(i)); end`,计算每个粒子与当前粒子之间适应度值的差的绝对值。 然后,使用循环统计距离小于minD的粒子个数。通过代码`for ii=1:N; if distance(ii)<minD; num=num+1; end; end`,统计距离小于minD的粒子个数,并将其除以总粒子数N,得到个体浓度PD。 最后,根据给定的因子a,计算替换概率PR。通过代码`PR=a*PF+(1-a)*PD`,将适应度概率PF与个体浓度PD的线性组合作为替换概率PR。 这个函数可以在免疫程序中使用,用于计算每个粒子的适应度概率、个体浓度和替换概率。
相关问题

if t>DS if mod(t,DS)==0 && (Pbest(t-DS+1)-Pbest(t))<1e-020 %如果连续DS代数,群体中的最优没有明显变优,则进行免疫. %在函数测试的过程中发现,经过一定代数的更新,个体最优不完全相等,但变化非常非常小, for i=1:N %先计算出个体最优的和 Psum=Psum+p(i); end for i=1:N %免疫程序 for j=1:N %计算每个个体与个体i的距离 distance(j)=abs(p(j)-p(i)); end num=0; for j=1:N %计算与第i个个体距离小于minD的个数 if distance(j)<minD num=num+1; end end PF(i)=p(N-i+1)/Psum; %计算适应度概率 PD(i)=num/N; %计算个体浓度 a=rand; %随机生成计算替换概率的因子 PR(i)=a*PF(i)+(1-a)*PD(i); %计算替换概率 end

这部分代码是粒子群优化算法中的免疫程序,用于在连续一定代数内群体中的最优解没有明显变优时进行免疫操作。 首先,代码中通过判断条件 `mod(t,DS)==0 && (Pbest(t-DS+1)-Pbest(t))<1e-020` 来确定是否进行免疫操作。条件中,DS表示一定的连续代数,Pbest(t)表示第t次迭代时的全局最优适应度值。 如果满足条件,则进行免疫操作。免疫操作的具体步骤如下: 1. 计算个体最优适应度值之和:使用循环遍历每个粒子的个体最优适应度值p(i),并将其累加到Psum变量中。 2. 免疫程序:对每个粒子进行免疫操作。具体步骤如下: a. 计算个体与其他个体之间的距离:使用循环计算每个粒子与第i个粒子之间的距离,距离定义为适应度值之间的差的绝对值。 b. 计算与第i个粒子距离小于minD的个数:使用循环统计距离小于minD的粒子个数,其中minD是一个阈值。 c. 计算适应度概率PF:将个体最优适应度值按照降序排列,并将p(N-i+1)除以个体最优适应度值之和Psum,得到适应度概率PF(i)。 d. 计算个体浓度PD:将距离小于minD的粒子个数num除以总粒子数N,得到个体浓度PD(i)。 e. 计算替换概率PR:随机生成一个因子a,并计算替换概率PR(i)。替换概率是适应度概率PF和个体浓度PD的线性组合,可以根据具体情况调整a的取值范围。 通过免疫程序,可以根据个体最优解的变化情况和个体之间的距离来调整粒子的替换概率,以提高算法的多样性和全局搜索能力。

Psum=0; %个体最佳的和

在粒子群优化算法中,Psum代表个体最佳适应度的和。具体而言,Psum表示所有粒子个体最佳适应度值的总和。 个体最佳适应度是指每个粒子在搜索过程中所取得的最佳适应度值。它反映了粒子个体在当前搜索空间中找到的最优解的质量。 Psum的计算可以通过遍历所有粒子,将它们个体最佳适应度值进行累加得到。例如,假设有N个粒子,它们的个体最佳适应度分别为Pbest1, Pbest2, ..., PbestN,则Psum的计算公式如下: Psum = Pbest1 + Pbest2 + ... + PbestN Psum可以用于计算粒子个体最佳适应度值的平均值、最大值或其它统计量,以评估整个粒子群的搜索性能。 在实际应用中,通过监控Psum的变化可以了解粒子群优化算法的收敛情况。当Psum趋近于最优解时,说明算法已经找到一个较好的解。因此,可以根据Psum的变化情况来判断算法是否需要调整参数或终止搜索过程。 总之,Psum是粒子群优化算法中用于衡量个体最佳适应度的总和的一个指标,可以用于评估算法的搜索性能并指导算法的优化过程。

相关推荐

//数据读取分割存储 void Dataimport::read(CString& input, CString& input1) { CFileDialog dlgFile(TRUE, _T("txt"), NULL, OFN_EXPLORER, _T("(文本文件)|*.dat")); if (dlgFile.DoModal() == IDCANCEL) return; CString trFileName = dlgFile.GetPathName(); CStdioFile rfile; if (!rfile.Open(trFileName, CFile::modeRead))AfxMessageBox(_T("文件未找到")); CString buf = _T(""); CString bufer = _T(""); CString str1 = _T(""); int ind = 1; while (rfile.ReadString(buf)) { if (ind == 1) { bufer += buf + _T("\r\n"); } if (remove(buf) == str1) { ind = 1; } } if (ind == 0) { AfxMessageBox(_T("输入数据格式不符合")); return; } input1 = trFileName; input = bufer; CStringArray array; SplitStringArray(bufer, '\r', array); int Pc1 = _tstof(array[0]); int Pc2 = _tstof(array[Pc1 + 1]); Pcount = Pc1 + Pc2; unk = Pc2; Psum = new Point[Pcount]; for (int i = 0; i < Pc1; i++) { CStringArray buf1; SplitStringArray(array[i + 1], ',', buf1); CString a = buf1[0]; Psum[i].index = buf1[0]; Psum[i].x = _tstof(buf1[1]); Psum[i].y = _tstof(buf1[2]); Psum[i].flag = 0; Psum[i].flag1 = 0; } CStringArray buf1; SplitStringArray(array[Pc1 + 2], ',', buf1); int m = 0; for (int i = Pc1; i < Pcount; i++) { Psum[i].index = buf1[m]; Psum[i].x = 0; Psum[i].y = 0; Psum[i].flag = 1; m++; } Lcount = _tstof(array[Pc1 + 3]); Lsum = new Line[Lcount]; for (int i = 0; i < Lcount; i++) { CStringArray buf2; SplitStringArray(array[Pc1 + 4 + i], ',', buf2); Lsum[i].start = buf2[0]; Lsum[i].end = buf2[1]; Lsum[i].length = _tstof(buf2[2]); Lsum[i].amangle = 0; } Acount = _tstof(array[Pc1 + 4 + Lcount]); Asum = new Angle[Acount]; int a = -1; for (int i = 0; i < Acount; i++) { CStringArray buf2; SplitStringArray(array[Pc1 + 5 + Lcount + i], ',', buf2); Asum[i].startP = buf2[0]; Asum[i].endP = buf2[1]; Asum[i].angle = _tstof(buf2[2]); if (Asum[i].angle == 0) { a++; } Asum[i].num = a; } 解释一下

最新推荐

recommend-type

基于EasyX的贪吃蛇小游戏 - C语言

基于EasyX的贪吃蛇小游戏 - C语言
recommend-type

Energy Core ECP5705-V01.pdf

Energy Core ECP5705-V01.pdf
recommend-type

matlabGUI学生成绩管理系统pdf

建立基于图形用户界面GUI的学生成绩管理系统,该系统能够实现学生成绩信息的增加、删除、查询(查询某门课所有学生的成绩并显示排名,查询某个学生的各科成绩并显示排名)、课程成绩统计最高分、最低分、平均分、方差、并显示相应的排名;绘制柱状图、条形图、饼状图、正太分布曲线等功能。 通过本实验使学生掌握图形用户界面GUI的操作和设计流程,并通过编写回调函数巩固前期的知识。
recommend-type

高职教育品牌专业申报汇总表.doc

高职教育品牌专业申报汇总表.doc
recommend-type

游戏运营数据后台需求表.docx

游戏运营数据后台需求表.docx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。