pytorch 发布自定义的c++算子流程
时间: 2023-10-07 21:06:06 浏览: 265
发布自定义的C++算子,需要完成以下步骤:
1. 编写C++代码:编写自定义算子的C++代码,包括前向计算和反向传播函数等。
2. 编写Python绑定代码:编写Python绑定代码,将C++算子封装为PyTorch模块,方便在Python中使用。
3. 编译C++代码:使用CMake或者Makefile等工具,将C++代码编译成共享库(.so或.dll文件)。
4. 使用PyTorch C++扩展API:使用PyTorch C++扩展API,将共享库加载到PyTorch中,并注册自定义算子。
5. 测试自定义算子:在Python中测试自定义算子是否能够正常工作。
这里提供一个简单的示例:
1. 编写C++代码
```cpp
#include <torch/extension.h>
torch::Tensor my_add_forward(const torch::Tensor& input1, const torch::Tensor& input2) {
return input1 + input2;
}
std::vector<torch::Tensor> my_add_backward(const torch::Tensor& grad_output) {
return {grad_output, grad_output};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &my_add_forward, "MyAdd forward");
m.def("backward", &my_add_backward, "MyAdd backward");
}
```
2. 编写Python绑定代码
```python
import torch
my_add = torch.utils.cpp_extension.load(name='my_add',
sources=['my_add.cpp'],
verbose=True)
def my_add_op(input1, input2):
return my_add.forward(input1, input2)
class MyAddFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input1, input2):
output = my_add_op(input1, input2)
ctx.save_for_backward(input1, input2)
return output
@staticmethod
def backward(ctx, grad_output):
input1, input2 = ctx.saved_tensors
grad_input = my_add.backward(grad_output)
return grad_input[0], grad_input[1]
my_add_function = MyAddFunction.apply
```
3. 编译C++代码
使用以下命令编译C++代码:
```sh
g++ -o my_add.so -shared -fPIC my_add.cpp $(python3 -m pybind11 --includes) -I/path/to/torch/include -I/path/to/torch/include/torch/csrc/api/include -L/path/to/torch/lib -ltorch -lc10
```
4. 使用PyTorch C++扩展API
```cpp
#include <torch/script.h>
#include <iostream>
int main() {
torch::jit::script::Module module = torch::jit::load("model.pt");
module.to(torch::kCPU);
std::string code = R"(
def forward(x, y):
return my_add_function(x, y)
)";
torch::jit::script::Module new_module = module.clone();
new_module.define(code);
// Test the new module
torch::Tensor x = torch::ones({2, 3});
torch::Tensor y = torch::ones({2, 3});
torch::Tensor output = new_module.forward({x, y}).toTensor();
std::cout << output << std::endl;
return 0;
}
```
5. 测试自定义算子
在Python中测试自定义算子:
```python
import torch
my_add = torch.utils.cpp_extension.load(name='my_add',
sources=['my_add.cpp'],
verbose=True)
def my_add_op(input1, input2):
return my_add.forward(input1, input2)
class MyAddFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input1, input2):
output = my_add_op(input1, input2)
ctx.save_for_backward(input1, input2)
return output
@staticmethod
def backward(ctx, grad_output):
input1, input2 = ctx.saved_tensors
grad_input = my_add.backward(grad_output)
return grad_input[0], grad_input[1]
my_add_function = MyAddFunction.apply
# Test the custom operator
x = torch.ones(2, 3, requires_grad=True)
y = torch.ones(2, 3, requires_grad=True)
z = my_add_function(x, y)
z.sum().backward()
print(x.grad) # tensor([[1., 1., 1.],[1., 1., 1.]])
print(y.grad) # tensor([[1., 1., 1.],[1., 1., 1.]])
```
阅读全文