修改递归方式实现的图的深度优先搜索(dfs)算法,将输出(访问)顶点信息的语句移动到退出递归前(即执行输出语句后立即退出递归)。采用修改后的算法遍历有向无环图 g,若输出结果中包含 g 中的全部顶点,则输出的顶点序列是 g 的:

时间: 2023-05-31 15:19:13 浏览: 527
### 回答1: 修改递归方式实现的图的深度优先搜索算法,可以将输出顶点信息的语句移动到退出递归前,这样可以保证在访问完当前顶点的所有邻接点后,再输出当前顶点的信息。这样可以更好地理解算法的执行过程,也方便我们观察算法的输出结果。 采用修改后的算法遍历有向无环图 g,如果输出结果中包含 g 中的全部顶点,则输出的顶点序列是 g 的拓扑排序。拓扑排序是有向无环图中所有顶点的线性序列,满足对于任意一条有向边 (u,v),顶点 u 在序列中都排在顶点 v 的前面。因此,如果输出的顶点序列是 g 的拓扑排序,就说明 g 是一个有向无环图。 ### 回答2: 首先,深度优先搜索算法(DFS)是一种经典的图遍历算法,在图中沿着深度遍历图的节点,尽可能深地搜索子节点,直到子节点为空,然后回溯到上一个节点,继续寻找未访问的节点。递归实现的DFS算法非常简单易懂,但是默认情况下会在递归函数中输出顶点信息,这种方式可能会使输出的顶点序列和预期的结果不一致。因此,我们需要将输出顶点信息的语句移动到递归结束时执行,即输出语句后立即退出递归。 修改后的DFS算法实现如下: ``` void DFS(int u){ visited[u] = true; for(int v : adj[u]){ if(!visited[v]){ DFS(v); } } cout << u << " "; // 输出顶点信息 } ``` 在这段代码中,我们先将当前节点u标记为已访问,然后递归地遍历所有未访问的邻居节点v。在结束所有邻居节点的访问后,输出当前节点u的信息,然后退出递归。这种方式确保了输出语句的执行顺序与遍历的顺序一致,从而得到正确的遍历序列。 对于有向无环图(DAG),我们可以采用上述修改后的深度优先遍历算法来遍历图,并输出遍历结果中的所有顶点序列。如果输出的序列中包含了图G中的全部顶点,则可以证明该图是一个DAG。因为对于任意一个有向有环图,必然存在一个环上的节点v,使得在遍历到v之前,无法遍历到v之后的节点,也就是说,无法找到一个遍历序列,包含所有图中的节点。 因此,如果输出的顶点序列不包含所有图中的节点,则可以证明该图不是一个DAG。 ### 回答3: 首先介绍一下深度优先搜索(depth first search,DFS)算法,在处理图形问题时是一种非常常用的方法。DFS 是一种用于遍历或搜索树或图的算法,其其工作原理是尽可能深(尽量往下走)走并访问每个节点,直到遇到无法前进的节点,然后返回访问过的节点。DFS 常被用于图形顶点之间的连通性、可达性和路径搜索问题等。 对于递归方式实现的图的 DFS 算法来说,我们可以通过将输出(访问)顶点信息的语句移动到退出递归前来对其进行修改,这样在访问完深度遍历路径上所有的节点后,我们便可以进行顶点信息的输出,然后通过退出递归函数结束此次遍历。这种修改方式可以让我们更清晰地理解深度遍历算法的核心思想,同时也便于我们在输出顺序上做出更细致的调整。 对于有向无环图 g 来说,我们可以采用修改后的算法来遍历它,并在输出结果中包含 g 中的全部顶点。此时,输出的顶点序列就是 g 的一个拓扑排序。拓扑排序是对有向无环图进行排序的一种算法,其结果是一个顶点的线性序列,满足对于每一条有向边 (u, v),在结果序列中顶点 u 都出现在顶点 v 的前面。如果一个图有环,则无法对其进行拓扑排序。 通过对有向无环图进行深度遍历,我们可以根据访问顺序得到它的一个拓扑排序。在遍历过程中,我们可以首先找到所有入度为 0 的顶点,并将它们添加到处理列表中。然后,对于每个顶点 u 的出边 (u,v),我们需要将 v 的入度减 1。如果 v 的入度变成了 0,那么我们就将 v 加入到处理列表中,这样就形成了一个不断更新的处理列表。遍历完成后,如果所有的顶点都被访问过了,那么我们就可以输出它们的顺序。 总之,通过修改递归方式实现的图的深度优先搜索算法,并将输出语句在退出递归前执行,我们就可以更好地实现图的遍历,并根据遍历的顺序生成拓扑排序,从而实现对有向无环图的可达性、连通性和路径等问题的解决。
阅读全文

相关推荐

doc
2. 系统设计 1.用到的抽象数据类型的定义 图的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧, 谓词P(v,w)定义了弧<v,w>的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合 操作结果:按V和VR的定义构造图G DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G InsertVex(&G,v) 初始条件:图G存在,v和图中顶点有相同特征 操作结果:在图G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:图G存在,v和w是G中两个顶点 操作结果:在G中增添弧<v,w>,若G是无向的则还增添对称弧<w,v> …… DFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 栈的抽象数据类型定义: ADT Stack{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定an端为栈顶,ai端为栈底 基本操作: InitStack(&S) 操作结果:构造一个空栈S DestroyStack(&S) 初始条件:栈S已存在 操作结果:将S清为空栈 StackEmpty(S) 初始条件:栈S已存在 操作结果:若栈S为空栈,则返回TRUE,否则FALSE …… Push(&S,e) 初始条件:栈S已存在 操作结果:插入元素e为新的栈顶元素 Pop(&S,&e) 初始条件:栈S已存在且非空 操作结果:删除S的栈顶元素,并用e返回其值 StackTraverse(S,visit()) 初始条件:栈S已存在且非空 操作结果:从栈底到栈顶依次对S的每个数据元素调用函数visit(),一旦visit()失败,则操作失效 }ADT Stack 队列的抽象数据类型定义: ADT Queue{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:Rl={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定其中ai端为队列头,an端为队列尾。 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q DestroyQueue(&Q) 初始条件:队列Q已存在 操作结果:队列Q被销毁,不再存在 QueueEmpty(Q) 初始条件:队列Q已存在 操作结果:若Q为空队列,则返回TRUE,否则FALSE …… EnQueue(&Q,e) 初始条件:队列Q已存在 操作结果:插入元素e为Q的新的队尾元素 DeQueue(&Q,&e) 初始条件:Q为非空队列 操作结果:删除Q的队头元素,并用e返回其值 }ADT Queue 2.主程序的流程: 调用CreateDN函数创建图的邻接表G; 调用PrintDN函数输出邻接表G; 调用DFSTraverse函数深度优先遍历图; 调用BFSTraverse函数广度优先遍历图

最新推荐

recommend-type

C++递归算法实例代码

分治法思想是将整体分割成部分,并总是从最小的部分(基本部分)开始入手(输出),其背后的原理在于当整体递归到部分时,会保留整体的信息,部分满足条件输出的结果会被回溯给整体使用,从而使得整体输出结果。...
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

在实验中,我们使用了递归和非递归两种方法来计算二叉树叶子节点个数,并将结果输出到控制台。结果表明,两种方法都可以正确地计算二叉树叶子节点个数。 四、结论 本文主要介绍了C++使用递归和非递归算法实现的...
recommend-type

MyBatis之自查询使用递归实现 N级联动效果(两种实现方式)

在本文中,我们将介绍两种实现 N级联动效果的方式:使用递归函数和使用数组。 第一种方式:使用递归函数 在第一种方式中,我们可以使用递归函数来实现 N级联动效果。递归函数是一种特殊的函数,它可以调用自身以便...
recommend-type

Java递归算法经典实例(经典兔子问题)

本文以经典的“兔子问题”为例,探讨如何使用Java实现递归算法。 “兔子问题”,也被称为“斐波那契兔子问题”或“莱昂纳多的兔子问题”,源于中世纪意大利数学家斐波那契提出的一个问题。假设一对兔子从出生后的第...
recommend-type

数据库基础测验20241113.doc

数据库基础测验20241113.doc
recommend-type

黑板风格计算机毕业答辩PPT模板下载

资源摘要信息:"创意经典黑板风格毕业答辩论文课题报告动态ppt模板" 在当前数字化教学与展示需求日益增长的背景下,PPT模板成为了表达和呈现学术成果及教学内容的重要工具。特别针对计算机专业的学生而言,毕业设计的答辩PPT不仅仅是一个展示的平台,更是其设计能力、逻辑思维和审美观的综合体现。因此,一个恰当且创意十足的PPT模板显得尤为重要。 本资源名为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板”,这表明该模板具有以下特点: 1. **创意设计**:模板采用了“黑板风格”的设计元素,这种风格通常模拟传统的黑板书写效果,能够营造一种亲近、随性的学术氛围。该风格的模板能够帮助展示者更容易地吸引观众的注意力,并引发共鸣。 2. **适应性强**:标题表明这是一个毕业答辩用的模板,它适用于计算机专业及其他相关专业的学生用于毕业设计课题的汇报。模板中设计的版式和内容布局应该是灵活多变的,以适应不同课题的展示需求。 3. **动态效果**:动态效果能够使演示内容更富吸引力,模板可能包含了多种动态过渡效果、动画效果等,使得展示过程生动且充满趣味性,有助于突出重点并维持观众的兴趣。 4. **专业性质**:由于是毕业设计用的模板,因此该模板在设计时应充分考虑了计算机专业的特点,可能包括相关的图表、代码展示、流程图、数据可视化等元素,以帮助学生更好地展示其研究成果和技术细节。 5. **易于编辑**:一个良好的模板应具备易于编辑的特性,这样使用者才能根据自己的需要进行调整,比如替换文本、修改颜色主题、更改图片和图表等,以确保最终展示的个性和专业性。 结合以上特点,模板的使用场景可以包括但不限于以下几种: - 计算机科学与技术专业的学生毕业设计汇报。 - 计算机工程与应用专业的学生论文展示。 - 软件工程或信息技术专业的学生课题研究成果展示。 - 任何需要进行学术成果汇报的场合,比如研讨会议、学术交流会等。 对于计算机专业的学生来说,毕业设计不仅仅是完成一个课题,更重要的是通过这个过程学会如何系统地整理和表述自己的思想。因此,一份好的PPT模板能够帮助他们更好地完成这个任务,同时也能够展现出他们的专业素养和对细节的关注。 此外,考虑到模板是一个压缩文件包(.zip格式),用户在使用前需要解压缩,解压缩后得到的文件为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板.pptx”,这是一个可以直接在PowerPoint软件中打开和编辑的演示文稿文件。用户可以根据自己的具体需要,在模板的基础上进行修改和补充,以制作出一个具有个性化特色的毕业设计答辩PPT。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

提升点阵式液晶显示屏效率技术

![点阵式液晶显示屏显示程序设计](https://iot-book.github.io/23_%E5%8F%AF%E8%A7%81%E5%85%89%E6%84%9F%E7%9F%A5/S3_%E8%A2%AB%E5%8A%A8%E5%BC%8F/fig/%E8%A2%AB%E5%8A%A8%E6%A0%87%E7%AD%BE.png) # 1. 点阵式液晶显示屏基础与效率挑战 在现代信息技术的浪潮中,点阵式液晶显示屏作为核心显示技术之一,已被广泛应用于从智能手机到工业控制等多个领域。本章节将介绍点阵式液晶显示屏的基础知识,并探讨其在提升显示效率过程中面临的挑战。 ## 1.1 点阵式显
recommend-type

在SoC芯片的射频测试中,ATE设备通常如何执行系统级测试以保证芯片量产的质量和性能一致?

SoC芯片的射频测试是确保无线通信设备性能的关键环节。为了在量产阶段保证芯片的质量和性能一致性,ATE(Automatic Test Equipment)设备通常会执行一系列系统级测试。这些测试不仅关注芯片的电气参数,还包含电磁兼容性和射频信号的完整性检验。在ATE测试中,会根据芯片设计的规格要求,编写定制化的测试脚本,这些脚本能够模拟真实的无线通信环境,检验芯片的射频部分是否能够准确处理信号。系统级测试涉及对芯片基带算法的验证,确保其能够有效执行无线信号的调制解调。测试过程中,ATE设备会自动采集数据并分析结果,对于不符合标准的芯片,系统能够自动标记或剔除,从而提高测试效率和减少故障率。为了
recommend-type

CodeSandbox实现ListView快速创建指南

资源摘要信息:"listview:用CodeSandbox创建" 知识点一:CodeSandbox介绍 CodeSandbox是一个在线代码编辑器,专门为网页应用和组件的快速开发而设计。它允许用户即时预览代码更改的效果,并支持多种前端开发技术栈,如React、Vue、Angular等。CodeSandbox的特点是易于使用,支持团队协作,以及能够直接在浏览器中编写代码,无需安装任何软件。因此,它非常适合初学者和快速原型开发。 知识点二:ListView组件 ListView是一种常用的用户界面组件,主要用于以列表形式展示一系列的信息项。在前端开发中,ListView经常用于展示从数据库或API获取的数据。其核心作用是提供清晰的、结构化的信息展示方式,以便用户可以方便地浏览和查找相关信息。 知识点三:用JavaScript创建ListView 在JavaScript中创建ListView通常涉及以下几个步骤: 1. 创建HTML的ul元素作为列表容器。 2. 使用JavaScript的DOM操作方法(如document.createElement, appendChild等)动态创建列表项(li元素)。 3. 将创建的列表项添加到ul容器中。 4. 通过CSS来设置列表和列表项的样式,使其符合设计要求。 5. (可选)为ListView添加交互功能,如点击事件处理,以实现更丰富的用户体验。 知识点四:在CodeSandbox中创建ListView 在CodeSandbox中创建ListView可以简化开发流程,因为它提供了一个在线环境来编写代码,并且支持实时预览。以下是使用CodeSandbox创建ListView的简要步骤: 1. 打开CodeSandbox官网,创建一个新的项目。 2. 在项目中创建或编辑HTML文件,添加用于展示ListView的ul元素。 3. 创建或编辑JavaScript文件,编写代码动态生成列表项,并将它们添加到ul容器中。 4. 使用CodeSandbox提供的实时预览功能,即时查看ListView的效果。 5. 若有需要,继续编辑或添加样式文件(通常是CSS),对ListView进行美化。 6. 利用CodeSandbox的版本控制功能,保存工作进度和团队协作。 知识点五:实践案例分析——listview-main 文件名"listview-main"暗示这可能是一个展示如何使用CodeSandbox创建基本ListView的项目。在这个项目中,开发者可能会包含以下内容: 1. 使用React框架创建ListView的示例代码,因为React是目前较为流行的前端库。 2. 展示如何将从API获取的数据渲染到ListView中,包括数据的获取、处理和展示。 3. 提供基本的样式设置,展示如何使用CSS来美化ListView。 4. 介绍如何在CodeSandbox中组织项目结构,例如如何分离组件、样式和脚本文件。 5. 包含一个简单的用户交互示例,例如点击列表项时弹出详细信息等。 总结来说,通过标题“listview:用CodeSandbox创建”,我们了解到本资源是一个关于如何利用CodeSandbox这个在线开发环境,来快速实现一个基于JavaScript的ListView组件的教程或示例项目。通过上述知识点的梳理,可以加深对如何创建ListView组件、CodeSandbox平台的使用方法以及如何在该平台中实现具体功能的理解。