python 计算ssim
时间: 2023-08-23 16:05:46 浏览: 196
在Python中计算结构相似性指数(SSIM)可以使用OpenCV库或Scikit-Image库。下面是使用OpenCV库的示例代码:
```python
import cv2
def ssim(img1, img2):
# 计算结构相似性指数
ssim = cv2.compareStructuralSimilarity(img1, img2, multichannel=True)
return ssim
```
其中,img1和img2是两张要比较的图像。
使用Scikit-Image库的示例代码如下:
```python
from skimage import measure
def ssim(img1, img2):
# 计算结构相似性指数
ssim = measure.compare_ssim(img1, img2, multichannel=True)
return ssim
```
同样,img1和img2是两张要比较的图像。注意,Scikit-Image库需要额外安装。
相关问题
python计算ssim代码
下面是Python计算SSIM的代码示例:
```python
import numpy as np
import cv2
def ssim(img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
# Example usage:
img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE)
ssim_value = ssim(img1, img2)
print("SSIM:", ssim_value)
```
其中,img1和img2分别为两幅灰度图像,可以使用cv2.imread()函数读取。SSIM值的范围在[-1, 1]之间,值越接近1表示两幅图像越相似。
写出使用python 计算 SSIM 的代码
当然可以!下面是一个使用Python计算结构相似性指数(SSIM)的示例代码:
```python
import cv2
import numpy as np
def ssim(img1, img2):
# 将图像转换为灰度图像
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 计算均值和方差
mean1, mean2 = np.mean(img1), np.mean(img2)
var1, var2 = np.var(img1), np.var(img2)
covar = np.cov(img1.flatten(), img2.flatten())[0, 1]
# 定义常量
c1 = (0.01 * 255) ** 2
c2 = (0.03 * 255) ** 2
# 计算SSIM指数
numerator = (2 * mean1 * mean2 + c1) * (2 * covar + c2)
denominator = (mean1 ** 2 + mean2 ** 2 + c1) * (var1 + var2 + c2)
ssim = numerator / denominator
return ssim
# 读取两张图像
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 计算SSIM指数
similarity = ssim(img1, img2)
print("SSIM:", similarity)
```
请确保在运行代码之前安装了OpenCV库(使用`pip install opencv-python`)并提供两个图像文件('image1.jpg'和'image2.jpg')作为输入。代码将计算并打印出两个图像之间的SSIM指数。
阅读全文