opencv c++获取最小轮廓以及中心点坐标代码

时间: 2023-03-10 11:35:30 浏览: 283
使用OpenCV C ++,可以使用findContours函数来获取最小轮廓,minAreaRect函数来获取最小轴对齐矩形,moments函数来获取中心点坐标。例如:// 获取最小轮廓 vector<vector<Point> > contours; findContours(src, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);// 获取最小轴对齐矩形 RotatedRect rect = minAreaRect(contours[0]);// 获取中心点坐标 Moments m = moments(contours[0], false); Point2f center = Point2f(m.m10 / m.m00, m.m01 / m.m00);
相关问题

OpenCV C++ 轮廓提取坐标和中心点的代码

### 回答1: 以下是提取轮廓坐标和中心点的代码示例: ``` #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("image.jpg", IMREAD_GRAYSCALE); Mat binary; threshold(src, binary, 100, 255, THRESH_BINARY); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); for (size_t i = ; i < contours.size(); i++) { // 计算轮廓的中心点 Moments mu = moments(contours[i]); Point2f center(mu.m10 / mu.m00, mu.m01 / mu.m00); cout << "Contour " << i << " center: " << center << endl; // 输出轮廓的坐标 for (size_t j = ; j < contours[i].size(); j++) { cout << "Contour " << i << " point " << j << ": " << contours[i][j] << endl; } } return ; } ``` 这段代码可以读取一张灰度图像,提取其轮廓,并输出每个轮廓的坐标和中心点。 ### 回答2: 以下是使用OpenCV C进行轮廓提取,并获取轮廓坐标和中心点的代码: ```c #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("example.jpg", IMREAD_GRAYSCALE); // 阈值化图像 threshold(image, image, 128, 255, THRESH_BINARY); // 查找轮廓 std::vector<std::vector<Point>> contours; findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 for (int i = 0; i < contours.size(); i++) { // 绘制轮廓 drawContours(image, contours, i, Scalar(255), 2); // 计算轮廓的中心点 Moments m = moments(contours[i]); Point center(m.m10 / m.m00, m.m01 / m.m00); // 输出轮廓坐标和中心点 printf("Contour %d:\n", i); for (int j = 0; j < contours[i].size(); j++) { printf("Point %d: (%d, %d)\n", j, contours[i][j].x, contours[i][j].y); } printf("Center: (%d, %d)\n", center.x, center.y); } // 显示结果 imshow("Contours", image); waitKey(0); return 0; } ``` 请注意,您需要将图像文件名更改为实际使用的图像文件,并根据需要进行其他适应性更改。此代码可用于提取图像中的轮廓,然后计算每个轮廓的中心点,并打印出轮廓坐标和中心点的值。 ### 回答3: 确定OpenCV版本: 首先,需要确定使用的OpenCV版本是C++还是C。如果是C++版本,可以使用cv::findContours函数来提取轮廓坐标和中心点。 C++代码示例: ```cpp #include <opencv2/opencv.hpp> #include <iostream> int main() { // 加载图像 cv::Mat image = cv::imread("input.png", cv::IMREAD_GRAYSCALE); // 二值化图像 cv::Mat binaryImage; cv::threshold(image, binaryImage, 128, 255, cv::THRESH_BINARY); // 寻找轮廓 std::vector<std::vector<cv::Point>> contours; std::vector<cv::Vec4i> hierarchy; cv::findContours(binaryImage, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 for (int i = 0; i < contours.size(); i++) { // 计算轮廓中心点坐标 cv::Moments moments = cv::moments(contours[i]); cv::Point center(moments.m10 / moments.m00, moments.m01 / moments.m00); // 打印轮廓坐标和中心点坐标 std::cout << "Contour #" << i << std::endl; for (int j = 0; j < contours[i].size(); j++) { std::cout << "Coordinate: (" << contours[i][j].x << ", " << contours[i][j].y << ")" << std::endl; } std::cout << "Center: (" << center.x << ", " << center.y << ")" << std::endl; } return 0; } ``` 以上示例代码假设输入的图像是灰度图像,二值化阈值为128,且只提取外部轮廓(RETR_EXTERNAL)。 如果使用的是C版本的OpenCV,可以参考以下代码进行相应修改: C代码示例: ```c #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui_c.h> #include <stdio.h> int main() { // 加载图像 IplImage* image = cvLoadImage("input.png", CV_LOAD_IMAGE_GRAYSCALE); CvMat* binaryImage = cvCreateMat(image->height, image->width, CV_8UC1); // 二值化图像 cvThreshold(image, binaryImage, 128, 255, CV_THRESH_BINARY); // 寻找轮廓 CvMemStorage* storage = cvCreateMemStorage(0); CvSeq* contours = NULL; cvFindContours(binaryImage, storage, &contours, sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // 遍历每个轮廓 int i = 0; for (CvSeq* contour = contours; contour != NULL; contour = contour->h_next) { CvMoments moments; cvMoments(contour, &moments); int cX = (int)(moments.m10 / moments.m00); int cY = (int)(moments.m01 / moments.m00); printf("Contour #%d\n", i++); for (int j = 0; j < contour->total; j++) { CvPoint* pt = (CvPoint*)cvGetSeqElem(contour, j); printf("Coordinate: (%d, %d)\n", pt->x, pt->y); } printf("Center: (%d, %d)\n", cX, cY); } cvReleaseImage(&image); cvReleaseMat(&binaryImage); cvReleaseMemStorage(&storage); return 0; } ``` 请注意,在C版本的OpenCV中,使用的是IplImage和CvMat来表示图像,使用CvMemStorage和CvSeq来处理轮廓。 以上两个示例代码中的input.png是作为输入图像的文件名。你需要根据实际图像的文件名进行修改。

OpenCV C++ 轮廓提取坐标和中心点并在原图中显示的代码

### 回答1: 以下是 OpenCV C 语言的轮廓提取坐标和中心点并在原图中显示的代码: ```c #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { Mat src = imread("test.jpg"); Mat gray, binary; cvtColor(src, gray, COLOR_BGR2GRAY); threshold(gray, binary, , 255, THRESH_BINARY | THRESH_OTSU); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point()); Mat dst = src.clone(); for (size_t i = ; i < contours.size(); i++) { drawContours(dst, contours, i, Scalar(, , 255), 2, 8, hierarchy); Moments mu = moments(contours[i], false); Point2f center(mu.m10 / mu.m00, mu.m01 / mu.m00); circle(dst, center, 2, Scalar(, 255, ), 2, 8, ); cout << "Contour " << i << " center: " << center << endl; } imshow("src", src); imshow("dst", dst); waitKey(); return ; } ``` 希望能对你有所帮助。 ### 回答2: 下面是一个使用OpenCV C++库来提取图像轮廓、计算轮廓中心点并在原图中显示的示例代码: ```cpp #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("image.jpg", IMREAD_COLOR); // 灰度化图像 Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // 二值化图像 Mat binary; threshold(gray, binary, 100, 255, THRESH_BINARY); // 查找轮廓 std::vector<std::vector<Point>> contours; findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 绘制轮廓 drawContours(image, contours, -1, Scalar(0, 0, 255), 2); for (const auto& contour : contours) { // 计算轮廓的矩 Moments moments = moments(contour); double cx = moments.m10 / moments.m00; double cy = moments.m01 / moments.m00; // 绘制中心点 circle(image, Point(cx, cy), 4, Scalar(0, 255, 0), -1); } // 显示结果图像 imshow("Contours", image); waitKey(0); return 0; } ``` 代码中,首先读取图像,并将其转换为灰度图像。然后,通过二值化处理将图像转换为黑白图像。 之后,使用`findContours`函数查找图像中的轮廓。参数`RETR_EXTERNAL`表示只检测最外层的轮廓,`CHAIN_APPROX_SIMPLE`表示使用简化的轮廓表示方法。 接着,使用`drawContours`函数在原图像上绘制轮廓线。 对于每个轮廓,通过计算矩的方式计算出轮廓的中心点坐标。最后,使用`circle`函数绘制出每个轮廓的中心点。 最后,将处理后的图像显示出来,等待用户按键退出。 ### 回答3: 以下是使用OpenCV C库进行轮廓提取、坐标和中心点计算,并在原图中显示的示例代码: ```c #include <opencv2/opencv.hpp> using namespace cv; int main() { // 读取图像 Mat image = imread("image.jpg", IMREAD_COLOR); // 灰度图 Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // 二值化 Mat binary; threshold(gray, binary, 128, 255, THRESH_BINARY); // 轮廓检测 std::vector<std::vector<Point>> contours; std::vector<Vec4i> hierarchy; findContours(binary, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 遍历轮廓 for (int i = 0; i < contours.size(); i++) { // 绘制轮廓 drawContours(image, contours, i, Scalar(0, 0, 255), 2); // 计算轮廓的边界框 Rect bbox = boundingRect(contours[i]); // 提取坐标 Point tl = bbox.tl(); Point br = bbox.br(); // 计算中心点 Point center = (tl + br) / 2; // 在原图中显示坐标和中心点 putText(image, "Top Left: (" + std::to_string(tl.x) + ", " + std::to_string(tl.y) + ")", tl, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); putText(image, "Bottom Right: (" + std::to_string(br.x) + ", " + std::to_string(br.y) + ")", br, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); putText(image, "Center: (" + std::to_string(center.x) + ", " + std::to_string(center.y) + ")", center, FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1); } // 显示结果 imshow("Contours", image); waitKey(0); return 0; } ``` 此示例代码通过读取名为"image.jpg"的图像,并使用OpenCV进行轮廓提取、坐标和中心点计算。然后,使用绘制轮廓和putText函数将坐标和中心点信息显示在原图中。最后,通过imshow函数显示结果。
阅读全文

相关推荐

最新推荐

recommend-type

opencv3/C++实现霍夫圆/直线检测

7. `Double param2`:中心点累加器阈值。 8. `Int minradius`:最小半径。 9. `Int maxradius`:最大半径。 以下是一个霍夫圆检测的代码示例: ```cpp #include &lt;opencv2/opencv.hpp&gt; int main() { Mat src, dst...
recommend-type

基于OpenCV的圆形标记点的提取

总结来说,本文介绍了一种利用OpenCV进行圆形标记点提取的方法,该方法通过一系列图像处理步骤,能够有效地在复杂背景下识别并提取出圆形标记点的中心坐标,适用于多视点云拼接和其他圆形物体识别的应用。...
recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。