wgan训练自己的数据集
时间: 2023-09-13 21:09:40 浏览: 331
训练自己的数据集
以下是一个简单的 WGAN(Wasserstein GAN)的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
# 定义生成器模型
class Generator(nn.Module):
def __init__(self, input_dim, output_dim):
super(Generator, self).__init__()
self.fc = nn.Linear(input_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, output_dim)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
x = self.tanh(x)
return x
# 定义判别器模型
class Discriminator(nn.Module):
def __init__(self, input_dim):
super(Discriminator, self).__init__()
self.fc = nn.Linear(input_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 定义训练函数
def train_wgan(generator, discriminator, dataloader, num_epochs):
optimizer_G = optim.RMSprop(generator.parameters(), lr=0.00005)
optimizer_D = optim.RMSprop(discriminator.parameters(), lr=0.00005)
criterion = nn.MSELoss()
for epoch in range(num_epochs):
for i, data in enumerate(dataloader):
real_data = data[0]
batch_size = real_data.size(0)
real_data = Variable(real_data.view(batch_size, -1))
# 训练判别器
optimizer_D.zero_grad()
z = Variable(torch.randn(batch_size, 100))
fake_data = generator(z)
real_pred = discriminator(real_data)
fake_pred = discriminator(fake_data.detach())
d_loss = -torch.mean(real_pred) + torch.mean(fake_pred)
d_loss.backward()
optimizer_D.step()
# 截断权重
for p in discriminator.parameters():
p.data.clamp_(-0.01, 0.01)
# 训练生成器
if i % 5 == 0:
optimizer_G.zero_grad()
z = Variable(torch.randn(batch_size, 100))
fake_data = generator(z)
fake_pred = discriminator(fake_data)
g_loss = -torch.mean(fake_pred)
g_loss.backward()
optimizer_G.step()
print(f"Epoch [{epoch+1}/{num_epochs}], d_loss: {d_loss.item():.4f}, g_loss: {g_loss.item():.4f}")
# 定义数据集和数据加载器
transform = trans
阅读全文