输入为11*11大小数据集用wgan生成11*11灰度图代码
时间: 2023-08-12 07:04:39 浏览: 116
生成灰度图代码.docx
下面是一个简单的WGAN-GP模型的代码示例,可以用于生成11x11大小的灰度图像。这里使用PyTorch实现。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import grad
# 定义生成器和判别器的网络结构
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc = nn.Linear(100, 256)
self.conv = nn.Sequential(
nn.ConvTranspose2d(16, 8, 4, stride=2, padding=1),
nn.BatchNorm2d(8),
nn.ReLU(),
nn.ConvTranspose2d(8, 1, 4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, z):
x = self.fc(z)
x = x.view(-1, 16, 4, 4)
x = self.conv(x)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 8, 4, stride=2, padding=1),
nn.BatchNorm2d(8),
nn.LeakyReLU(),
nn.Conv2d(8, 16, 4, stride=2, padding=1),
nn.BatchNorm2d(16),
nn.LeakyReLU()
)
self.fc = nn.Linear(256, 1)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 256)
x = self.fc(x)
return x
# 定义WGAN-GP的损失函数
def wgan_gp_loss(real, fake, discriminator, device):
# 计算判别器对真实图像和生成图像的输出
real_out = discriminator(real)
fake_out = discriminator(fake)
# 计算WGAN-GP损失
d_loss = fake_out.mean() - real_out.mean()
epsilon = torch.rand(real.shape[0], 1, 1, 1).to(device)
interpolated = epsilon * real + (1 - epsilon) * fake
interpolated_out = discriminator(interpolated)
gradients = grad(outputs=interpolated_out, inputs=interpolated,
grad_outputs=torch.ones_like(interpolated_out),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * 10
d_loss += gradient_penalty
return d_loss
# 设置训练参数和超参数
batch_size = 64
lr = 0.0001
z_dim = 100
n_epochs = 200
clip_value = 0.01
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载数据集
transform = transforms.Compose([
transforms.Resize(11),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
dataset = DataLoader(torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True),
batch_size=batch_size, shuffle=True)
# 初始化生成器和判别器
generator = Generator().to(device)
discriminator = Discriminator().to(device)
# 定义优化器
g_optimizer = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))
# 训练WGAN-GP模型
for epoch in range(n_epochs):
for i, (real_images, _) in enumerate(dataset):
real_images = real_images.to(device)
# 训练判别器
for j in range(5):
# 生成随机噪声
z = torch.randn(real_images.shape[0], z_dim).to(device)
# 生成假图像
fake_images = generator(z)
# 更新判别器
d_optimizer.zero_grad()
d_loss = wgan_gp_loss(real_images, fake_images, discriminator, device)
d_loss.backward()
d_optimizer.step()
# 截断判别器的参数
for p in discriminator.parameters():
p.data.clamp_(-clip_value, clip_value)
# 训练生成器
z = torch.randn(real_images.shape[0], z_dim).to(device)
fake_images = generator(z)
g_optimizer.zero_grad()
g_loss = -discriminator(fake_images).mean()
g_loss.backward()
g_optimizer.step()
# 输出训练信息
if i % 100 == 0:
print(f"Epoch [{epoch}/{n_epochs}] Batch [{i}/{len(dataset)}] D loss: {d_loss:.4f} | G loss: {g_loss:.4f}")
# 保存生成的图像
with torch.no_grad():
z = torch.randn(1, z_dim).to(device)
fake_image = generator(z).squeeze()
save_image(fake_image, f"images/{epoch}.png", normalize=True)
```
这个代码示例中,我们定义了一个生成器和一个判别器,它们分别用于生成和判别11x11的灰度图像。在训练过程中,我们使用了WGAN-GP损失函数,并使用Adam优化器对生成器和判别器进行优化。在每个epoch结束时,我们生成一个随机噪声向量,并使用生成器生成一个假图像,并将其保存为一个PNG文件。
阅读全文