fit <- CoxBoost(train[,'month'], train[,'OS'], as.matrix(train[,-c(0:2)]), stepno=200, sf.scheme=c("sigmoid"), criterion="hscore")的各参数含义和解释

时间: 2023-12-09 18:03:28 浏览: 34
- train[,'month']:存放每个样本的观察时间(时间尺度),用于计算生存时间。 - train[,'OS']:存放每个样本的生存状态(0表示存活,1表示死亡)。 - as.matrix(train[,-c(0:2)]):存放训练数据的特征矩阵,去掉第一列(样本ID)和前两列(month和OS)。 - stepno=200:指定CoxBoost算法的最大步数。 - sf.scheme=c("sigmoid"):指定生存概率分布函数为sigmoid函数。 - criterion="hscore":指定模型评价指标为Harrell's concordance index(C-index),用于衡量模型的预测准确度。
相关问题

arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr1, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['month', 'sales']) sales = data['sales'].values.astype(np.float32) sales_mean = sales.mean() sales_std = sales.std() sales = abs(sales - sales_mean) / sales_std train_data = sales[:-1] test_data = sales[-12:] def create_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(11, 1))) model.add(layers.Conv1D(filters=32, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=64, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=128, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=256, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=512, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(1, activation='linear')) return model model = create_model() BATCH_SIZE = 16 BUFFER_SIZE = 100 train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.window(11, shift=1, drop_remainder=True) train_dataset = train_dataset.flat_map(lambda window: window.batch(11)) train_dataset = train_dataset.map(lambda window: (window[:-1], window[-1:])) train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(1) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') history = model.fit(train_dataset, epochs=100, verbose=0) test_input = test_data[:-1] test_input = np.reshape(test_input, (1, 11, 1)) predicted_sales = model.predict(test_input)[0][0] * sales_std + sales_mean test_prediction = model.predict(test_input) y_test=test_data[1:12] y_pred=test_prediction y_pred = test_prediction.ravel() print("预测下一个月的销量为:", predicted_sales),如何将以下代码稍作修改插入到上面的最后,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")

你可以在最后添加如下代码实现 `comput_acc()` 函数的功能: ``` label = 0 # 定义标签 a = np.array(test_data[label]) # 获取测试数据的标签列 real_y = a[1:] # 实际销售数据 real_predict = y_pred[:-1] # 预测销售数据 print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%") ``` 这段代码的作用是,首先定义标签为 0,即选取测试数据中的第一列数据(即销售数据)。然后,使用 `np.array()` 函数将该列数据转换为 numpy 数组 `a`。接着,将 `a` 中的第二个元素到最后一个元素赋值给 `real_y`,这里是因为真实销售数据的第一个元素已经作为测试数据输入了模型,所以预测值中不包含该元素。然后,将 `y_pred` 中的第一个元素到倒数第二个元素赋值给 `real_predict`,这是因为预测值中的最后一个元素已经与真实值的最后一个元素相对应。最后,调用 `comput_acc()` 函数计算预测准确率,并将结果打印输出。

arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr2 = np.array(input("请输入连续24个月的车辆销售数据,元素之间用空格隔开:").split(), dtype=float) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr0, arr1, arr2, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['num', 'month', 'car sales', 'sales']) data = data[['month', 'car sales', 'sales']] train_data, test_data = train_test_split(data, test_size=0.3) scaler = MinMaxScaler(feature_range=(0, 1)) data_scaled = scaler.fit_transform(data) train_size = int(len(data_scaled) * 0.7) test_size = len(data_scaled) - train_size train, test = data_scaled[0:train_size,:], data_scaled[train_size:len(data_scaled),:] def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset)-look_back): X.append(dataset[i:(i+look_back), :]) Y.append(dataset[i+look_back, :]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train, look_back) X_test, Y_test = create_dataset(test, look_back) model = Sequential() model.add(LSTM(4, input_shape=(look_back, 3))) model.add(Dense(3)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(X_train, Y_train, epochs=100, batch_size=1, verbose=0) train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) Y_train = scaler.inverse_transform(Y_train) test_predict = scaler.inverse_transform(test_predict) Y_test = scaler.inverse_transform(Y_test) last_month = data_scaled[-look_back:] last_month = last_month.reshape((1, look_back, 3))#1,12,3 next_month = model.predict(last_month) next_month = scaler.inverse_transform(next_month) print('下个月的预测结果是:', round(next_month[0][2])),如何将以下代码插入,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")

可以将以下代码插入到代码中: ```python def comput_acc(real, predict, level): num_error = 0 for i in range(len(real)): if abs(real[i] - predict[i]) / real[i] > level: num_error += 1 return 1 - num_error / len(real) a = np.array(test_data['sales']) real_y = a real_predict = test_predict[:, 2] print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%") ``` 其中,`test_data['sales']` 是测试集中的实际值(即真实销售数据),`test_predict[:, 2]` 则是模型预测的销售数据。`comput_acc` 函数用于计算预测准确率。在这里,我们将置信水平设为 0.2,表示预测结果与实际结果的相对误差在 20% 以内视为准确。

相关推荐

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

setuptools-11.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于J2EE的B2C电子商务系统开发.zip

基于J2EE的B2C电子商务系统开发
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。