>>> import torch.nn as nn >>> import torch >>> rnn = nn.LSTM(5, 6, 2) >>> input = torch.randn(1, 3, 5) >>> h0 = torch.randn(2, 3, 6) >>> c0 = torch.randn(2, 3, 6) >>> output, (hn, cn) = rnn(input, (h0, c0))
时间: 2023-11-23 14:54:26 浏览: 133
torch.nn.embedding()大致使用方法
这是一个使用 PyTorch 实现的 LSTM 模型的示例代码。具体来说,这个模型有 5 个输入特征,6 个隐藏单元,2 层 LSTM。输入数据的形状为 (1, 3, 5),其中 1 表示 batch size,3 表示序列长度,5 表示每个时间步的特征数。h0 和 c0 是 LSTM 的初始隐藏状态和细胞状态,形状为 (2, 3, 6),其中 2 表示层数,3 表示 batch size,6 表示隐藏单元数。模型的输出为 output,形状为 (1, 3, 6),表示每个时间步的输出特征,同时还返回了最后一个时间步的隐藏状态 hn 和细胞状态 cn,形状均为 (2, 3, 6)。
阅读全文