补充以下代码: def __init__(self, embedding_dim, hidden_dim, vocab_size, label_size, batch_size): super(LSTMClassifier, self).__init__() self.hidden_dim = hidden_dim self.batch_size = batch_size # 实验三(扩展):更换为 glove 词向量 self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # 实验一:定义 LSTM 层,并替换为 BiLSTM,RNN,比较其不同 self.lstm = nn.LSTM(embedding_dim,hidden_dim) # 使用lstm层 lstm_out, self.hidden = self.lstm( , self.hidden) self.hidden2label = nn.Linear(hidden_dim, label_size) self.hidden = self.init_hidden()
时间: 2024-04-27 20:19:11 浏览: 112
lstm_out, self.hidden = self.lstm(input, self.hidden),其中 input 是通过词向量层获得的词嵌入向量,维度为 (batch_size, sequence_length, embedding_dim)。同时,需要在类中定义 init_hidden 方法来初始化 LSTM 的隐藏状态和记忆状态,如下所示:
def init_hidden(self):
# 两个状态的shape:(num_layers * num_directions, batch_size, hidden_dim)
return (torch.zeros(1, self.batch_size, self.hidden_dim),
torch.zeros(1, self.batch_size, self.hidden_dim))
相关问题
补充以下代码: def __init__(self, embedding_dim, hidden_dim, vocab_size, label_size, batch_size): super(LSTMClassifier, self).__init__() self.hidden_dim = hidden_dim self.batch_size = batch_size # 实验三(扩展):更换为 glove 词向量 self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) # 实验一:定义 LSTM 层,并替换为 BiLSTM,RNN,比较其不同 self.lstm = nn.LSTM(embedding_dim,hidden_dim) self.hidden2label = nn.Linear(hidden_dim, label_size) self.hidden = self.init_hidden()
在这段代码中,需要添加 forward 方法来完成模型的前向传播。代码如下:
def forward(self, sentence):
embeds = self.word_embeddings(sentence) # 获取词嵌入向量
lstm_out, self.hidden = self.lstm(embeds.view(len(sentence), self.batch_size, -1), self.hidden) # LSTM层的输出
tag_space = self.hidden2label(lstm_out[-1]) # 取最后一个时间步的输出,作为标签空间
tag_scores = F.log_softmax(tag_space, dim=1) # 在标签空间上进行logsoftmax,得到预测的标签概率
return tag_scores
其中,输入的 sentence 是一个长为 sequence_length 的 LongTensor,表示一个句子中每个单词在词典中的索引。在 forward 方法中,首先通过词嵌入层获取词嵌入向量,然后将其转换成 LSTM 层接受的格式 (seq_len, batch_size, input_size),接着将其输入到 LSTM 层中,得到 LSTM 层的输出 lstm_out 和最后一个时间步的隐藏状态 self.hidden。将 lstm_out 的最后一个时间步的输出经过一个线性层和 logsoftmax 层,得到预测的标签概率。
import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错
在代码中出现了一个错误:缺少 `Counter` 的导入语句。需要在开头添加 `from collections import Counter`。
另外,在模型训练时,需要将模型设置为训练模式(`model.train()`),以启用 dropout 和 batch normalization 等功能。同时,还需要将输入和目标数据转移到 GPU 上进行计算,以加速训练过程。具体修改如下:
```
import torch
import torch.nn as nn
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from collections import Counter
# 数据预处理
tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')
counter = Counter()
for (label, line) in train_iter:
counter.update(tokenizer(line))
vocab = build_vocab_from_iterator([counter], specials=["<unk>"])
word2idx = dict(vocab.stoi)
# 设定超参数
embedding_dim = 64
hidden_dim = 128
num_epochs = 10
batch_size = 64
# 定义模型
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(RNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, 4)
def forward(self, x):
x = self.embedding(x)
out, _ = self.rnn(x)
out = self.fc(out[:, -1, :])
return out
# 初始化模型、优化器和损失函数
model = RNN(len(vocab), embedding_dim, hidden_dim)
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# 将模型设置为训练模式
model.train()
# 将数据转移到 GPU 上
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
train_iter = AG_NEWS(split='train')
train_data = []
for (label, line) in train_iter:
label = torch.tensor([int(label)-1]).to(device)
line = torch.tensor([word2idx[word] for word in tokenizer(line)]).to(device)
train_data.append((line, label))
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
# 开始训练
for epoch in range(num_epochs):
total_loss = 0.0
for input, target in train_loader:
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target.squeeze())
loss.backward()
optimizer.step()
total_loss += loss.item() * input.size(0)
print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))
```