torch.nn.lstm
时间: 2024-03-27 10:33:28 浏览: 116
Pythorch中torch.nn.LSTM()参数详解
5星 · 资源好评率100%
torch.nn.LSTM是PyTorch中的一个类,用于实现长短期记忆(Long Short-Term Memory,LSTM)神经网络模型。LSTM是一种特殊的循环神经网络(Recurrent Neural Network,RNN),它在处理序列数据时能够更好地捕捉长期依赖关系。
LSTM模型通过使用门控机制来控制信息的流动,从而有效地解决了传统RNN模型中的梯度消失和梯度爆炸等问题。它具有三个关键的门控单元:输入门(input gate)、遗忘门(forget gate)和输出门(output gate)。这些门控单元通过学习来决定是否传递、遗忘或输出信息。
在PyTorch中,torch.nn.LSTM类提供了一个方便的接口来定义和训练LSTM模型。你可以通过指定输入维度、隐藏状态维度、层数等参数来创建一个LSTM模型。然后,你可以将输入序列传递给LSTM模型,并获得输出序列和最后一个隐藏状态。
阅读全文