import Astar # 定义起点和终点的坐标 start_cor = (19, 0) end_cor = (1, 20) # 定义路径上的路标点 waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] # 定义计算两个点之间距离的函数 def distance(_from, _to): x1, y1 = _from x2, y2 = _to # 使用 Astar 算法寻路,计算出两个点之间的距离 dist = Astar.get_dist(x1, y1, x2, y2) return dist 其中distance函数返回的是两个坐标之间的距离将以上代码改进以实现从坐标start_cor开始经过waypoint中的所有坐标最后到达终点坐标end_co,要使整个路径最短并打印出经过的每一个坐标

时间: 2023-09-20 08:07:11 浏览: 47
好的,我们可以使用 A* 算法来计算最短路径。以下是改进后的代码: ```python import Astar # 定义起点和终点的坐标 start_cor = (19, 0) end_cor = (1, 20) # 定义路径上的路标点 waypoints = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] # 定义计算两个点之间距离的函数 def distance(_from, _to): x1, y1 = _from x2, y2 = _to # 使用 A* 算法寻路,计算出两个点之间的距离 dist = Astar.get_dist(x1, y1, x2, y2) return dist # 定义计算整个路径的距离的函数 def get_path_distance(path): dist = 0 for i in range(len(path)-1): dist += distance(path[i], path[i+1]) return dist # 定义寻找最短路径的函数 def find_shortest_path(start, end, waypoints): # 初始化路径 path = [start] # 依次加入路标点 for waypoint in waypoints: # 寻找当前位置到下一个路标点之间的最短路径 sub_path = Astar.find_path(path[-1][0], path[-1][1], waypoint[0], waypoint[1]) # 将最短路径上的所有点加入路径中 path += sub_path[1:] # 寻找最后一个路标点到终点之间的最短路径 sub_path = Astar.find_path(path[-1][0], path[-1][1], end[0], end[1]) # 将最短路径上的所有点加入路径中 path += sub_path[1:] # 计算路径长度 dist = get_path_distance(path) return path, dist # 寻找最短路径 path, dist = find_shortest_path(start_cor, end_cor, waypoints) # 打印路径上的所有点 print("路径上的坐标点:") for point in path: print(point) # 打印路径长度 print("路径长度:", dist) ``` 这段代码会输出路径上的所有点和路径长度。希望这可以帮助你解决问题!

相关推荐

import Astar import heapq start_cor = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end_cor = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}"

import Astar import heapq start = (19, 0) treasures = [(5, 15), (5, 1), (9, 3), (11, 17), (7, 19), (15, 19), (13, 1), (15, 5)] end = (1, 20) # 定义一个函数计算两个坐标之间的距离 def distance(_from, _to): # 返回从起点到终点的最短路径 x1, y1 = _from x2, y2 = _to distancepath = Astar.find_path(x1, y1, x2, y2) return distancepath n = len(treasures) adj_matrix = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): dist = distance(treasures[i], treasures[j]) adj_matrix[i][j] = dist adj_matrix[j][i] = dist # 使用Dijkstra算法求解最短路径 start = 0 end = n - 1 distances = [float('inf')] * n distances[start] = 0 visited = set() heap = [(0, start)] while heap: (dist, current) = heapq.heappop(heap) if current == end: break if current in visited: continue visited.add(current) for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and neighbor not in visited: new_distance = dist + weight if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(heap, (new_distance, neighbor)) # 输出结果 path = [end] current = end while current != start: for neighbor, weight in enumerate(adj_matrix[current]): if weight > 0 and distances[current] == distances[neighbor] + weight: path.append(neighbor) current = neighbor break print(path) path.reverse() print(f"从第{start+1}个坐标开始经过其他几个坐标最后到达第{end+1}个坐标的最短路线为:{path}") print(f"总距离为:{distances[end]}")

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std :: cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } } },添加代碼:繪製直綫agv從path獲取的行駛路綫

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。