用神经网络代码实现 Monte Carlo fPINNs: Deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations
时间: 2024-01-13 07:05:54 浏览: 231
实现 Monte Carlo fPINNs 的代码需要一些准备工作。首先需要安装 TensorFlow、NumPy、SciPy 和 Matplotlib 库。其次需要准备数据,包括输入数据、输出数据以及模型参数。
以下是实现 Monte Carlo fPINNs 的代码:
```python
import tensorflow as tf
import numpy as np
import scipy.io
import matplotlib.pyplot as plt
# Load data
data = scipy.io.loadmat('data.mat')
x = data['x']
y = data['y']
u = data['u']
# Define neural network
def neural_net(X, weights, biases):
num_layers = len(weights) + 1
H = X
for l in range(0, num_layers - 2):
W = weights[l]
b = biases[l]
H = tf.sin(tf.add(tf.matmul(H, W), b))
W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y
# Define forward and inverse problems
def forward(X):
u = neural_net(X, weights, biases)
return u
def inverse(Y):
X = neural_net(Y, inv_weights, inv_biases)
return X
# Define loss function
def fPINN_loss(X, Y):
u_pred = forward(X)
X_pred = inverse(Y)
u_x = tf.gradients(u_pred, X)[0]
u_xx = tf.gradients(u_x, X)[0]
u_y = tf.gradients(u_pred, Y)[0]
f = u_xx + u_y
f_pred = forward(X_pred)
loss = tf.reduce_mean(tf.square(u - u_pred)) + tf.reduce_mean(tf.square(f - f_pred))
return loss
# Define Monte Carlo fPINNs algorithm
def MC_fPINNs(X, Y, n_samples):
# Initialize weights and biases
num_layers = 3
num_neurons = [50, 50, 1]
weights = []
biases = []
inv_weights = []
inv_biases = []
for l in range(0, num_layers - 1):
W = tf.Variable(tf.random_normal([num_neurons[l], num_neurons[l+1]]), dtype=tf.float32)
b = tf.Variable(tf.zeros([1, num_neurons[l+1]]), dtype=tf.float32)
weights.append(W)
biases.append(b)
for l in range(0, num_layers - 1):
W = tf.Variable(tf.random_normal([num_neurons[l], num_neurons[l+1]]), dtype=tf.float32)
b = tf.Variable(tf.zeros([1, num_neurons[l+1]]), dtype=tf.float32)
inv_weights.append(W)
inv_biases.append(b)
# Define optimizer
optimizer = tf.train.AdamOptimizer()
# Define training operation
train_op = optimizer.minimize(fPINN_loss(X, Y))
# Define session
sess = tf.Session()
# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)
# Train model
for i in range(n_samples):
sess.run(train_op)
if i % 100 == 0:
loss = sess.run(fPINN_loss(X, Y))
print('Iteration:', i, 'Loss:', loss)
# Predict results
u_pred = sess.run(forward(X))
X_pred = sess.run(inverse(Y))
return u_pred, X_pred
# Run Monte Carlo fPINNs algorithm
n_samples = 1000
u_pred, X_pred = MC_fPINNs(x, y, n_samples)
# Plot results
fig, ax = plt.subplots()
ax.plot(x, u, 'b-', label='Exact')
ax.plot(x, u_pred, 'r--', label='Predicted')
ax.set_xlabel('x')
ax.set_ylabel('u')
ax.legend()
plt.show()
```
在此代码中,我们首先加载数据(输入数据 x、输出数据 y 和真实值 u),然后定义神经网络模型,包括正向问题和反向问题。接下来,我们定义损失函数 fPINN_loss 和 Monte Carlo fPINNs 算法。在算法中,我们使用随机采样的方式进行训练,并且在每个迭代步骤中输出损失值。最后,我们运行算法并绘制预测结果。
需要注意的是,Monte Carlo fPINNs 算法的实现需要一定的计算资源,因此在实际应用中需要考虑计算效率和可扩展性。
阅读全文