'KMeans' object has no attribute 'labels_'
时间: 2023-07-14 16:58:19 浏览: 748
这个错误通常出现在使用KMeans聚类算法的时候,原因可能是因为你没有调用KMeans算法的fit方法进行训练或者fit方法没有正确执行,导致模型没有生成labels_属性。你可以检查一下你的代码是否正确调用了KMeans的fit方法,并且确保输入的数据格式正确。另外,你也可以尝试使用其他的聚类算法,比如DBSCAN或者层次聚类等。
相关问题
kmeans object has no attribute labels
The error message "kmeans object has no attribute labels" typically occurs when you try to access the "labels" attribute of a KMeans object in scikit-learn, but the attribute does not exist.
In scikit-learn, the KMeans algorithm does not have a "labels" attribute by default. Instead, you can use the "predict" method to assign labels to new data points based on a trained KMeans model. For example:
```
from sklearn.cluster import KMeans
# create KMeans object and fit it to data
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
# assign labels to new data points
labels = kmeans.predict(new_data)
```
If you need to access the cluster labels assigned to the training data by KMeans, you can use the "labels_" attribute instead:
```
# get cluster labels assigned to training data
train_labels = kmeans.labels_
```
Note that the "labels_" attribute only exists after the KMeans object has been fit to data.
KMeans object has no attribute 'labels
这个错误通常发生在使用KMeans聚类算法时,可能是因为你的代码中没有对KMeans对象进行训练或者训练不成功,导致没有生成聚类标签。你可以检查以下代码中是否有对KMeans对象进行拟合的语句,例如使用fit()函数对数据进行训练。
如果有,你可以尝试检查训练数据的格式是否正确,或者尝试调整KMeans算法的超参数以获得更好的聚类效果。
如果没有,你需要在使用KMeans对象之前对其进行拟合,例如使用fit()函数对数据进行训练,然后才能使用labels属性获取聚类标签。
阅读全文