y_reg = data[ data.columns[0] ]
时间: 2023-12-24 08:05:31 浏览: 71
这行代码是从一个名为"data"的DataFrame中选取第一列,并将其赋值给变量"y_reg"。具体来说,"data.columns"返回"data"中所有列的名称,"[0]"则表示选取第一列。最后,"data[ data.columns[0] ]"表示选取"data"中的第一列作为一个Series。
相关问题
import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)报错import pandas as pd data=pd.read_csv('housing.csv') total_bedrooms_mean=data['total_bedrooms'].mean() data['total_bedrooms'].fillna(total_bedrooms_mean,inplace=True) onehot=pd.get_dummies((data[['ocean_proximity']]),prefix='ocean_proximity') data.drop(columns = ['ocean_proximity'],inplace=True) X=pd.concat([data['housing_median_age'],data['total_rooms'],data['total_bedrooms'],data['population'],data['households'],data['median_income'],onehot],axis=1) y=data[["median_house_value"]] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42) from sklearn.linear_model import LinearRegression lin_reg=LinearRegression() lin_reg.fit(X_train,y_train) y_pre=lin_reg.predict(X_test) from sklearn import metrics metrics.accuracy_score(y_test,y_pre)
这个代码会报错,因为`metrics.accuracy_score()`是用于分类问题的指标,而这里是回归问题,所以不能使用该指标。
如果你想评估回归模型的性能,可以使用回归指标,如均方误差(mean squared error, MSE)、均方根误差(root mean squared error, RMSE)或平均绝对误差(mean absolute error, MAE)。例如,使用MSE指标可以这样计算:
```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pre)
print(mse)
```
请注意,当使用不同的指标时,解释和解读结果的方式也会有所不同,因此请根据你的具体问题和数据类型选择适当的指标。
from sklearn.datasets import load_iris, fetch_20newsgroups import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from pylab import mpl mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False iris = load_iris() iris_data = pd.DataFrame(data=iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']) iris_data['target'] = iris.target print(iris_data) def plot_iris(iris, col1, col2): sns.lmplot(x=col1, y=col2, data=iris, hue="target", fit_reg=False) plt.xlabel(col1) plt.ylabel(col2) plt.title('鸢尾花种类分布图') plt.show() plot_iris(iris_data, 'Sepal_Width', 'Petal_Length')请根据上述代码写一份详细解析
这段代码主要用于对鸢尾花数据集进行可视化分析。以下是每一部分的详细解析:
1. 导入必要的库
```
from sklearn.datasets import load_iris, fetch_20newsgroups
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False
```
首先导入了 `load_iris` 和 `fetch_20newsgroups` 模块,用于加载鸢尾花数据集和新闻组数据集。然后导入了 `seaborn` 和 `matplotlib.pyplot` 用于可视化分析,以及 `pandas` 用于数据处理。最后设置了中文字体和负号的显示。
2. 加载鸢尾花数据集
```
iris = load_iris()
iris_data = pd.DataFrame(data=iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
iris_data['target'] = iris.target
print(iris_data)
```
使用 `load_iris()` 函数加载鸢尾花数据集。然后将数据集转换成 `pandas` 中的 `DataFrame` 格式,并设置列名。最后添加一列 `target`,其中存储了每个样本的类别。最后输出数据集。
3. 可视化分析
```
def plot_iris(iris, col1, col2):
sns.lmplot(x=col1, y=col2, data=iris, hue="target", fit_reg=False)
plt.xlabel(col1)
plt.ylabel(col2)
plt.title('鸢尾花种类分布图')
plt.show()
plot_iris(iris_data, 'Sepal_Width', 'Petal_Length')
```
定义了一个名为 `plot_iris()` 的函数,该函数接受三个参数:`iris` 表示数据集,`col1` 和 `col2` 分别表示要绘制的两个特征。函数中使用 `lmplot()` 函数绘制了散点图,并根据 `hue` 参数将不同类别的数据点着上不同的颜色。然后添加了横纵坐标轴的标签和图表标题,并最终显示了图表。最后调用该函数并传入数据集和要绘制的两个特征。在这个例子中,我们绘制了花萼宽度和花瓣长度的散点图。
阅读全文