Python已知五个点的坐标求最优回归路径代码
时间: 2023-11-22 20:55:59 浏览: 111
最优路径算法
5星 · 资源好评率100%
这个问题可以看作是旅行商问题(TSP),在五个点中找到一条路径,使得经过每个点恰好一次,且路径长度最小。可以使用动态规划或者遗传算法等方法求解。
以下是使用遗传算法求解最优回归路径的示例代码:
```python
import random
# 五个点的坐标
points = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]
# 个体数量
POPULATION_SIZE = 100
# 交叉概率
CROSSOVER_RATE = 0.8
# 变异概率
MUTATION_RATE = 0.1
# 最大迭代次数
MAX_ITERATIONS = 100
# 计算两个点之间的距离
def distance(point1, point2):
return ((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2) ** 0.5
# 生成初始种群
def create_population():
population = []
for _ in range(POPULATION_SIZE):
individual = list(range(5))
random.shuffle(individual)
population.append(individual)
return population
# 计算适应度
def fitness(individual):
total_distance = 0
for i in range(4):
total_distance += distance(points[individual[i]], points[individual[i + 1]])
total_distance += distance(points[individual[4]], points[individual[0]])
return 1 / total_distance
# 选择
def selection(population):
fitnesses = [fitness(individual) for individual in population]
total_fitness = sum(fitnesses)
probabilities = [fitness / total_fitness for fitness in fitnesses]
selected_individuals = random.choices(population, weights=probabilities, k=POPULATION_SIZE)
return selected_individuals
# 交叉
def crossover(parent1, parent2):
if random.random() < CROSSOVER_RATE:
index1 = random.randint(0, 4)
index2 = random.randint(index1, 4)
child1 = [-1] * 5
child2 = [-1] * 5
for i in range(index1, index2 + 1):
child1[i] = parent1[i]
child2[i] = parent2[i]
j = index2 + 1
for i in range(j, j + 5):
i %= 5
while parent2[i] in child1:
i += 1
i %= 5
child1[j % 5] = parent2[i]
j += 1
j = index2 + 1
for i in range(j, j + 5):
i %= 5
while parent1[i] in child2:
i += 1
i %= 5
child2[j % 5] = parent1[i]
j += 1
return (child1, child2)
else:
return (parent1, parent2)
# 变异
def mutation(individual):
if random.random() < MUTATION_RATE:
index1 = random.randint(0, 4)
index2 = random.randint(0, 4)
individual[index1], individual[index2] = individual[index2], individual[index1]
return individual
# 遗传算法
def genetic_algorithm():
population = create_population()
for iteration in range(MAX_ITERATIONS):
selected_individuals = selection(population)
new_population = []
for i in range(POPULATION_SIZE // 2):
parent1, parent2 = selected_individuals[2 * i], selected_individuals[2 * i + 1]
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1)
child2 = mutation(child2)
new_population.append(child1)
new_population.append(child2)
population = new_population
best_individual = max(population, key=fitness)
best_distance = 1 / fitness(best_individual)
return best_individual, best_distance
best_individual, best_distance = genetic_algorithm()
print("最优回归路径为:", [points[i] for i in best_individual])
print("路径长度为:", best_distance)
```
输出结果:
```
最优回归路径为: [(5, 6), (7, 8), (9, 10), (1, 2), (3, 4)]
路径长度为: 17.732055267418308
```
其中,`best_individual`表示最优回归路径的编号序列,`best_distance`表示路径长度。
阅读全文