请给我一段用CGAN生成数组的代码
时间: 2024-05-14 22:12:21 浏览: 103
以下是一个使用CGAN生成数组的Python代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, Dense, Reshape, Flatten, Concatenate
from keras.layers import BatchNormalization, Activation, Embedding
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam
# 定义生成器模型
def build_generator(latent_dim, n_classes):
noise = Input(shape=(latent_dim,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(n_classes, latent_dim)(label))
model_input = Concatenate()([noise, label_embedding])
model = Dense(128 * 7 * 7, activation='relu')(model_input)
model = Reshape((7, 7, 128))(model)
model = BatchNormalization()(model)
model = UpSampling2D()(model)
model = Conv2D(64, kernel_size=5, padding='same', activation='relu')(model)
model = BatchNormalization()(model)
model = UpSampling2D()(model)
model = Conv2D(1, kernel_size=5, padding='same', activation='tanh')(model)
model = Model([noise, label], model)
return model
# 定义判别器模型
def build_discriminator(img_shape, n_classes):
img = Input(shape=img_shape)
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(n_classes, np.prod(img_shape))(label))
label_embedding = Reshape(img_shape)(label_embedding)
model_input = Concatenate()([img, label_embedding])
model = Conv2D(64, kernel_size=5, padding='same')(model_input)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.3)(model)
model = Conv2D(128, kernel_size=5, strides=2, padding='same')(model)
model = LeakyReLU(alpha=0.2)(model)
model = Dropout(0.3)(model)
model = Flatten()(model)
model = Dense(1, activation='sigmoid')(model)
model = Model([img, label], model)
return model
# 定义CGAN模型
def build_cgan(generator, discriminator):
discriminator.trainable = False
noise = Input(shape=(latent_dim,))
label = Input(shape=(1,), dtype='int32')
img = generator([noise, label])
validity = discriminator([img, label])
model = Model([noise, label], validity)
model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))
return model
# 训练CGAN模型
def train(generator, discriminator, cgan, epochs, batch_size, latent_dim, n_classes, X_train):
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs, labels = X_train[idx], y_train[idx]
noise = np.random.normal(0, 1, (batch_size, latent_dim))
gen_imgs = generator.predict([noise, labels])
d_loss_real = discriminator.train_on_batch([imgs, labels], valid)
d_loss_fake = discriminator.train_on_batch([gen_imgs, labels], fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
sampled_labels = np.random.randint(0, n_classes, batch_size).reshape(-1, 1)
g_loss = cgan.train_on_batch([noise, sampled_labels], valid)
print("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# 加载数据集
(X_train, y_train), (_, _) = mnist.load_data()
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
# 定义模型参数
img_shape = X_train.shape[1:]
latent_dim = 100
n_classes = 10
batch_size = 32
epochs = 10000
# 构建生成器和判别器
generator = build_generator(latent_dim, n_classes)
discriminator = build_discriminator(img_shape, n_classes)
# 构建CGAN模型
cgan = build_cgan(generator, discriminator)
# 训练CGAN模型
train(generator, discriminator, cgan, epochs, batch_size, latent_dim, n_classes, X_train)
```
这个代码示例使用了Keras框架来实现CGAN模型,使用了MNIST手写数字数据集来训练模型。生成器模型接受一个噪声向量和一个标签,输出一个生成的图像。判别器模型接受一个图像和一个标签,输出这个图像是否为真实数据的概率。CGAN模型将生成器和判别器结合起来,生成器的输出被传入判别器中判断其真伪,并通过反向传播来更新生成器的参数以生成更真实的图像。
阅读全文