CGAN生成器损失函数和判别器损失函数
时间: 2023-06-10 08:02:46 浏览: 266
CGAN的生成器损失函数和判别器损失函数分别是:
生成器损失函数:min log(1 - D(G(z)))
判别器损失函数:min -[log(D(x)) + log(1 - D(G(z)))]
其中,G(z)表示生成器生成的数据,D(x)表示判别器判别真实数据的概率,D(G(z))表示判别器判别生成数据的概率。
相关问题
pytorch使用cgan生成图片
好的,很高兴为您解答。GAN(Generative Adversarial Networks)是一种深度学习模型,可以生成与训练数据相似的新数据。CGAN(Conditional GAN)是一种带条件的GAN,它能够在生成新数据时考虑输入的条件,使生成的数据更加精确和准确。在使用PyTorch实现CGAN生成图片时,一般需要先定义生成器和判别器模型,然后设置优化器、损失函数等参数。接着,将带有条件的真实图像和噪声输入到生成器中,然后将生成器生成的假图像和真实图像一起输入到判别器中进行判别,最后通过反向传播调整生成器和判别器的参数,不断优化模型,使得生成的图片更加真实和准确。
输入列表用python实现CGAN生成列表
首先,需要确定生成列表的具体规则,例如列表中元素的数据类型、元素数量等等。假设我们要生成一个包含10个随机整数的列表,可以使用以下代码实现CGAN生成列表:
```python
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, concatenate
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Sequential, Model
from keras.optimizers import Adam
# 定义生成器
def build_generator():
noise_shape = (100,)
model = Sequential()
model.add(Dense(256, input_shape=noise_shape))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(10, activation='tanh'))
model.add(Reshape((1, 10)))
noise = Input(shape=noise_shape)
img = model(noise)
return Model(noise, img)
# 定义判别器
def build_discriminator():
model = Sequential()
model.add(Flatten(input_shape=(1, 10)))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
img = Input(shape=(1, 10))
validity = model(img)
return Model(img, validity)
# 定义CGAN
def build_cgan(generator, discriminator):
noise = Input(shape=(100,))
label = Input(shape=(1, 10))
img = generator(noise)
discriminator.trainable = False
validity = discriminator(img)
concatenated = concatenate([noise, label], axis=1)
combined = discriminator(concatenated)
cgan = Model([noise, label], [validity, combined])
cgan.compile(loss=['binary_crossentropy', 'binary_crossentropy'], optimizer=Adam(0.0002, 0.5))
return cgan
# 生成随机整数列表
def generate_random_list(generator):
noise = np.random.normal(0, 1, (1, 100))
label = np.random.uniform(-1, 1, (1, 1, 10))
generated_list = generator.predict([noise, label])
generated_list = np.squeeze(generated_list)
return generated_list
# 训练CGAN
def train(generator, discriminator, cgan, epochs, batch_size):
X_train = np.random.uniform(-1, 1, (10000, 1, 10))
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_lists = X_train[idx]
noise = np.random.normal(0, 1, (batch_size, 100))
fake_lists = generator.predict([noise, real_lists])
d_loss_real = discriminator.train_on_batch(real_lists, valid)
d_loss_fake = discriminator.train_on_batch(fake_lists, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
g_loss = cgan.train_on_batch([noise, real_lists], [valid, fake])
if epoch % 100 == 0:
random_list = generate_random_list(generator)
print("Epoch %d: D_loss = %f, G_loss = %f, generated_list = %s" % (epoch, d_loss, g_loss[0], random_list))
# 构建CGAN模型
generator = build_generator()
discriminator = build_discriminator()
cgan = build_cgan(generator, discriminator)
# 训练CGAN模型
train(generator, discriminator, cgan, epochs=5000, batch_size=128)
```
在训练过程中,我们每100个epoch生成一次随机整数列表,并输出当前的D_loss、G_loss以及生成的列表。最终,训练完成后,我们可以通过调用`generate_random_list`函数来生成任意数量的随机整数列表。
阅读全文