利用pytorch框架设计基于DPN92模型的目标检测与分类输出坐标、大小和种类的完整程序
时间: 2023-06-10 20:07:03 浏览: 221
下面是一个基于DPN92模型的目标检测与分类输出坐标、大小和种类的完整程序。这个程序使用了PyTorch框架,并且使用了COCO数据集进行训练和测试。
```python
import torch
import torch.nn as nn
import torchvision
class DPN92(nn.Module):
def __init__(self, num_classes=80):
super(DPN92, self).__init__()
self.backbone = torchvision.models.dpn92(pretrained=True)
self.classification_head = nn.Linear(2688, num_classes)
self.localization_head = nn.Sequential(
nn.Conv2d(2688, 256, kernel_size=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 8, kernel_size=1)
)
def forward(self, x):
features = self.backbone.features(x)
classification_output = self.classification_head(features.mean([2, 3]))
localization_output = self.localization_head(features).permute(0, 2, 3, 1)
return classification_output, localization_output
class CocoDetection(torch.utils.data.Dataset):
def __init__(self, root_dir, set_name='train2017', transform=None):
from pycocotools.coco import COCO
self.root_dir = root_dir
self.coco = COCO('{}/annotations/instances_{}.json'.format(root_dir, set_name))
self.image_ids = self.coco.getImgIds()
self.transform = transform
def __getitem__(self, index):
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import numpy as np
from pycocotools import mask as coco_mask
image_info = self.coco.loadImgs(self.image_ids[index])[0]
image = TF.to_tensor(TF.resize(TF.pil_loader('{}/images/{}'\
.format(self.root_dir, image_info['file_name'])), (512, 512)))
ann_ids = self.coco.getAnnIds(imgIds=image_info['id'], iscrowd=False)
boxes = []
masks = []
labels = []
for ann_id in ann_ids:
ann = self.coco.loadAnns(ann_id)[0]
bbox = torch.tensor([ann['bbox'][0], ann['bbox'][1], ann['bbox'][0]+ann['bbox'][2], ann['bbox'][1]+ann['bbox'][3]])
boxes.append(bbox)
masks.append(coco_mask.decode(self.coco.annToMask(ann)))
labels.append(ann['category_id'])
if len(boxes) == 0:
boxes = torch.zeros((0, 4))
masks = torch.zeros((0, image.shape[1], image.shape[2]))
labels = torch.zeros((0,), dtype=torch.int64)
else:
boxes = torch.stack(boxes, dim=0)
masks = torch.stack(masks, dim=0)
labels = torch.tensor(labels, dtype=torch.int64)
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
iscrowd = torch.zeros((len(ann_ids),), dtype=torch.int64)
target = {
'boxes': boxes,
'labels': labels,
'masks': masks,
'area': area,
'iscrowd': iscrowd
}
if self.transform:
image, target = self.transform(image, target)
return image, target
def __len__(self):
return len(self.image_ids)
def collate_fn(batch):
images = []
targets = []
for image, target in batch:
images.append(image)
targets.append(target)
return torch.stack(images, dim=0), targets
def train_one_epoch(model, optimizer, data_loader, device, epoch):
model.train()
for images, targets in data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in target.items()} for target in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
optimizer.zero_grad()
losses.backward()
optimizer.step()
def main():
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = DPN92(num_classes=80).to(device)
optimizer = optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
transform = transforms.Compose([
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor()
])
train_dataset = CocoDetection(root_dir='/path/to/coco', set_name='train2017', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
for epoch in range(10):
train_one_epoch(model, optimizer, train_loader, device, epoch)
```
这个程序包括一个DPN92模型的定义、一个COCO数据集的定义、一个数据加载函数和一个训练函数。在训练过程中,我们使用了SGD优化器和随机水平翻转的数据增强。这个程序可以用于训练一个能够检测和分类COCO数据集中的物体的模型。
阅读全文
相关推荐
基于LSTM神经网络的温度预测分析
介绍
基于LSTM神经网络的温度预测分析,探索使用LSTM神经网络对中国湖北省孝感市的气温进行预测,并且评估其预测精度。
软件架构
软件架构说明
安装教程
pip install --save pandas numpy sklearn tensorflow
**目 录**
. 课程背景及意义 2]()
[2. 实验目的: 2]()
[3. 数据集: 3]()
[3.1 数据来源 3]()
[3.2 数据清洗 4]()
[3.3 数据标准化 4]()
[4. 实验步骤: 5]()
[4.1 数据获取 5]()
[4.2 数据处理 7]()
[4.3 LSTM模型构建与训练 10]()
[5. 结果分析 18]()
[6. 实验总结 21]()
1. # <a name