鸢尾花分类python算法knn
时间: 2023-08-12 17:06:46 浏览: 147
KNN算法对鸢尾花进行分类
鸢尾花分类问题可以使用k-近邻算法(k-nearest neighbors,KNN)进行解决。KNN是一种简单且直观的分类算法,它的基本思想是通过测量不同特征之间的距离来对样本进行分类。
在Python中,可以使用scikit-learn库来实现KNN算法。首先,需要导入必要的库和数据集:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```
然后,加载鸢尾花数据集并将其分为训练集和测试集:
```python
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
```
接下来,创建一个KNN分类器并进行训练:
```python
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
```
最后,使用训练好的模型对测试集进行预测并计算准确率:
```python
accuracy = knn.score(X_test, y_test)
```
这样就可以得到KNN算法在鸢尾花分类问题上的准确率。
需要注意的是,KNN算法的计算过程相对繁琐,特别是对于高维数据集和大样本量的情况。因此,在实际应用中,可能需要进一步优化算法以提高效率。
#### 引用[.reference_title]
- *1* [python实现KNN分类算法(鸢尾花数据集)](https://blog.csdn.net/weixin_43868025/article/details/102559778)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文