# Def X and Y X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)这段代码是什么意思
时间: 2023-12-24 21:09:24 浏览: 57
这段代码主要是将数据集按照一定比例(这里是 80% 的训练集和 20% 的测试集)随机划分为训练集(X_train 和 y_train)和测试集(X_test 和 y_test),并对 y_train 和 y_test 进行独热编码。
具体来说,第一行代码通过 `drop()` 函数将数据集中的标签列(即 y 列)从数据集中去除,得到只包含特征的数据集 X。第二行代码则将数据集 X 和标签 y 按照 80:20 的比例随机划分成训练集和测试集,其中 `train_size=0.8` 表示训练集占总数据集的 80%,`shuffle=True` 表示在划分数据集时进行随机打乱,`random_state=1` 则是为了保证每次划分数据集的随机结果一致。
第三行代码使用 `to_categorical()` 函数将训练集的标签 y_train 进行独热编码,将其从原来的类别值转换为了一个长度为类别数目的向量,向量中只有一个元素为 1,其余均为 0,表示该样本属于这个类别。同理,第四行代码对测试集的标签 y_test 进行独热编码。
相关问题
解释这段代码# Def X and Y X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)
这段代码用于对数据集进行处理,其中:
- `data` 是原始的数据集;
- `X` 是特征数据,通过 `drop` 方法删除了 `data` 中的 `Outcome` 列;
- `y` 是目标数据,即 `Outcome` 列;
- `train_test_split` 方法将数据集随机分割成训练集和测试集,其中 `train_size=0.8` 表示训练集占原始数据集的80%;
- `shuffle=True` 表示在分割数据集之前要先打乱数据集的顺序,`random_state=1` 表示打乱顺序的随机种子,可以保证每次运行程序时得到的结果是一样的;
- `to_categorical` 方法将目标数据集转化为多分类格式,以适应某些机器学习算法的要求。
function median_target(var) { temp = data[data[var].notnull()]; temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index(); return temp; } data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5; data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5; data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107; data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1; data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27; data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32; data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70; data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5; data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1; data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3; target_col = ["Outcome"]; cat_cols = data.nunique()[data.nunique() < 12].keys().tolist(); cat_cols = [x for x in cat_cols]; num_cols = [x for x in data.columns if x not in cat_cols + target_col]; bin_cols = data.nunique()[data.nunique() == 2].keys().tolist(); multi_cols = [i for i in cat_cols if i in bin_cols]; le = LabelEncoder(); for i in bin_cols: data[i] = le.fit_transform(data[i]); data = pd.get_dummies(data=data, columns=multi_cols); std = StandardScaler(); scaled = std.fit_transform(data[num_cols]); scaled = pd.DataFrame(scaled, columns=num_cols); df_data_og = data.copy(); data = data.drop(columns=num_cols, axis=1); data = data.merge(scaled, left_index=True, right_index=True, how='left'); X = data.drop('Outcome', axis=1); y = data['Outcome']; X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1); y_train = to_categorical(y_train); y_test = to_categorical(y_test);将这段代码添加注释
# 导入必要的库
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# 定义函数,返回每个特征在不同结果下的中位数
def median_target(var):
temp = data[data[var].notnull()]
temp = temp[[var, 'Outcome']].groupby(['Outcome'])[[var]].median().reset_index()
return temp
# 将缺失值填充为中位数
data.loc[(data['Outcome'] == 0) & (data['Insulin'].isnull()), 'Insulin'] = 102.5
data.loc[(data['Outcome'] == 1) & (data['Insulin'].isnull()), 'Insulin'] = 169.5
data.loc[(data['Outcome'] == 0) & (data['Glucose'].isnull()), 'Glucose'] = 107
data.loc[(data['Outcome'] == 1) & (data['Glucose'].isnull()), 'Glucose'] = 1
data.loc[(data['Outcome'] == 0) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 27
data.loc[(data['Outcome'] == 1) & (data['SkinThickness'].isnull()), 'SkinThickness'] = 32
data.loc[(data['Outcome'] == 0) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 70
data.loc[(data['Outcome'] == 1) & (data['BloodPressure'].isnull()), 'BloodPressure'] = 74.5
data.loc[(data['Outcome'] == 0) & (data['BMI'].isnull()), 'BMI'] = 30.1
data.loc[(data['Outcome'] == 1) & (data['BMI'].isnull()), 'BMI'] = 34.3
# 将数据进行分类处理
target_col = ["Outcome"]
cat_cols = data.nunique()[data.nunique() < 12].keys().tolist()
cat_cols = [x for x in cat_cols]
num_cols = [x for x in data.columns if x not in cat_cols + target_col]
bin_cols = data.nunique()[data.nunique() == 2].keys().tolist()
multi_cols = [i for i in cat_cols if i in bin_cols]
# 对二分类特征进行编码
le = LabelEncoder()
for i in bin_cols:
data[i] = le.fit_transform(data[i])
# 将分类特征进行独热编码
data = pd.get_dummies(data=data, columns=multi_cols)
# 对数值特征进行标准化
std = StandardScaler()
scaled = std.fit_transform(data[num_cols])
scaled = pd.DataFrame(scaled, columns=num_cols)
# 将数据进行合并
df_data_og = data.copy()
data = data.drop(columns=num_cols, axis=1)
data = data.merge(scaled, left_index=True, right_index=True, how='left')
# 划分训练集和测试集,对标签进行独热编码
X = data.drop('Outcome', axis=1)
y = data['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)