# Def X and Y X = data.drop('Outcome', axis=1) y = data['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, shuffle=True, random_state=1) y_train = to_categorical(y_train) y_test = to_categorical(y_test)这段代码是什么意思
时间: 2023-12-24 14:09:24 浏览: 68
pima_data.zip
这段代码主要是将数据集按照一定比例(这里是 80% 的训练集和 20% 的测试集)随机划分为训练集(X_train 和 y_train)和测试集(X_test 和 y_test),并对 y_train 和 y_test 进行独热编码。
具体来说,第一行代码通过 `drop()` 函数将数据集中的标签列(即 y 列)从数据集中去除,得到只包含特征的数据集 X。第二行代码则将数据集 X 和标签 y 按照 80:20 的比例随机划分成训练集和测试集,其中 `train_size=0.8` 表示训练集占总数据集的 80%,`shuffle=True` 表示在划分数据集时进行随机打乱,`random_state=1` 则是为了保证每次划分数据集的随机结果一致。
第三行代码使用 `to_categorical()` 函数将训练集的标签 y_train 进行独热编码,将其从原来的类别值转换为了一个长度为类别数目的向量,向量中只有一个元素为 1,其余均为 0,表示该样本属于这个类别。同理,第四行代码对测试集的标签 y_test 进行独热编码。
阅读全文