as.matrix(.SD)

时间: 2024-05-18 13:13:19 浏览: 15
`.SD`是`data.table`中的一个特殊变量,它代表了数据表中分组操作的结果。在这个例子中,`.SD`包含了`gene_name`分组后剩余列的数据。 `as.matrix()`是一个函数,可以将数据框、列表等数据格式转换为矩阵格式。在这个例子中,`.SD`是一个数据表,使用`as.matrix()`函数将其转换为矩阵格式。 因此,`as.matrix(.SD)`的作用是将`.SD`中的数据转换为矩阵格式,以便进行矩阵相关的计算。
相关问题

install.packages('glmnet') library(glmnet) graphics.off() rm(list =ls()) install.packages('readxl') library(readxl) data<-read_excel("C:\\Users\\cora\\Desktop\\吉林省上市\\data1.xlsx") data X=read_excel("C:\\Users\\cora\\Desktop\\吉林省上市\\zbl.xlsx") X x<-as.matrix(X) x Y=read.csv("C:\\Users\\cora\\Desktop\\吉林省上市\\ybl.xlsx") Y y<-as.matrix(Y) y X=scale(X,center = T,scale = T) colMeans(X) #求平均值 apply(X,2,sd) #标准差 #c(),把将值合并成向量或列表 #rep(0,p/2-5),把0重复p/2-5次 beta = c(0.15,-0.33,0.25,-0.25,0.05,rep(0,p/2-5), -0.25,0.12,-0.125,rep(0,p/2-3)) # %*%矩阵乘法 y = x%*%beta + rnorm(180,sd=0.5) # rnorm(n, mean = 0, sd = 1) # n 为产生随机值个数(长度),mean 是平均数, sd 是标准差 y = scale(y) lambda<-0.01 #lasso la.eq <- glmnet(x,y,intercept = F,alpha=1) plot(la.eq,xvar ="lambda",label = F,lwd=2) mod_cv <- cv.glmnet(x=x,y=y,intercept = F,alpha=1) plot(mod_cv) print(paste(mod_cv$lambda.min, log(mod_cv$lambda.min))) print(paste(mod_cv$lambda.lse, log(mod_cv$lambda.lse))) best_lambda<-mod_cv$lambda.min best_lambda best_model<- glmnet(X,y,alpha =1,lambda = best_lambda) coef(best_model)

这段代码使用了一些R语言的包和函数来进行数据处理和线性回归分析。下面是对每个步骤的解释: 1. `install.packages('glmnet')` 和 `library(glmnet)`: 这些代码用于安装和加载名为 `glmnet` 的R包,该包提供了实现Lasso和弹性网络等回归方法的函数。 2. `graphics.off()`: 这个函数用于关闭图形设备,以便在之后重新绘制新的图形。 3. `rm(list = ls())`: 这个命令用于清空当前环境中的所有对象。 4. `install.packages('readxl')` 和 `library(readxl)`: 这些代码用于安装和加载名为 `readxl` 的R包,该包提供了读取Excel文件的函数。 5. `data <- read_excel("C:\\Users\\cora\\Desktop\\吉林省上市\\data1.xlsx")`: 这行代码读取名为 "data1.xlsx" 的Excel文件,并将其内容存储在名为 `data` 的变量中。 6. `X = read_excel("C:\\Users\\cora\\Desktop\\吉林省上市\\zbl.xlsx")`: 这行代码读取名为 "zbl.xlsx" 的Excel文件,并将其内容存储在名为 `X` 的变量中。 7. `x <- as.matrix(X)`: 这行代码将变量 `X` 转换为矩阵,并将结果存储在名为 `x` 的变量中。 8. `Y = read.csv("C:\\Users\\cora\\Desktop\\吉林省上市\\ybl.xlsx")`: 这行代码读取名为 "ybl.xlsx" 的CSV文件,并将其内容存储在名为 `Y` 的变量中。 9. `y <- as.matrix(Y)`: 这行代码将变量 `Y` 转换为矩阵,并将结果存储在名为 `y` 的变量中。 10. `X = scale(X, center = T, scale = T)`: 这行代码对变量 `X` 进行标准化处理,使其均值为0,标准差为1。 11. `colMeans(X)`: 这个函数计算矩阵 `X` 的每一列的平均值。 12. `apply(X, 2, sd)`: 这个函数对矩阵 `X` 的每一列应用 `sd` 函数,计算标准差。 13. `beta = c(0.15, -0.33, 0.25, -0.25, 0.05, rep(0, p/2-5), -0.25, 0.12, -0.125, rep(0, p/2-3))`: 这行代码定义了一个名为 `beta` 的向量,其中包含了一系列数值。 14. `y = x %*% beta + rnorm(180, sd = 0.5)`: 这行代码使用矩阵乘法将矩阵 `x` 和向量 `beta` 相乘,并加上一个服从正态分布的随机噪声。 15. `y = scale(y)`: 这行代码对向量 `y` 进行标准化处理,使其均值为0,标准差为1。 16. `lambda <- 0.01`: 这行代码将变量 `lambda` 赋值为0.01。 17. `la.eq <- glmnet(x, y, intercept = F, alpha = 1)`: 这行代码使用 `glmnet` 函数进行Lasso回归分析,其中 `x` 是自变量矩阵,`y` 是因变量向量,`intercept = F` 表示不包括截距项,`alpha = 1` 表示使用Lasso方法。 18. `plot(la.eq, xvar = "lambda", label = F, lwd = 2)`: 这个函数用于绘制Lasso回归模型的系数路径图。 19. `mod_cv <- cv.glmnet(x = x, y = y, intercept = F, alpha = 1)`: 这行代码使用 `cv.glmnet` 函数进行交叉验证,选择最佳的正则化参数。 20. `plot(mod_cv)`: 这个函数用于绘制交叉验证结果的图形。 21. `print(paste(mod_cv$lambda.min, log(mod_cv$lambda.min)))`: 这行代码打印最小的正则化参数及其对数值。 22. `print(paste(mod_cv$lambda.lse, log(mod_cv$lambda.lse)))`: 这行代码打印最小平方误差的正则化参数及其对数值。 23. `best_lambda <- mod_cv$lambda.min`: 这行代码将最佳正则化参数赋值给变量 `best_lambda`。 24. `best_model <- glmnet(X, y, alpha = 1, lambda = best_lambda)`: 这行代码使用最佳正则化参数进行Lasso回归模型的拟合。 25. `coef(best_model)`: 这个函数用于获取Lasso回归模型的系数估计值。 这段代码的目标是根据给定的数据进行线性回归分析,并使用Lasso方法进行特征选择。

在R中,运行以下代码时:# 生成随机数据集 set.seed(1) data <- matrix(rnorm(50*30), nrow = 50) colnames(data) <- paste0("V", 1:30) y1 <- data %*% rnorm(30, mean = 2, sd = 0.5) y2 <- data %*% rnorm(30, mean = 1, sd = 0.3) y3 <- data %*% rnorm(30, mean = 3, sd = 0.7) # 线性回归模型 data <- as.data.frame(data) lm.fit1 <- lm(y1 ~ ., data = data) lm.fit2 <- lm(y2 ~ ., data = data) lm.fit3 <- lm(y3 ~ ., data = data) data <- as.data.frame(lapply(data, as.numeric)) # 计算 CV 值 library(boot) cv.error1 <- cv.glm(data, lm.fit1)$delta[1]。出现了以下问题:Error in model.frame.default(formula = y1 ~ ., data = list(V1 = c(-0.626453810742332, : 变数的长度不一样('V1')。。请从头至尾对代码的表达逻辑进行更改,并解决该问题

根据错误提示,出现问题的是变量的长度不一致。错误发生在最后一行代码,因为在前面的代码中,data已经被转换为data.frame类型,并且其中所有变量的长度应该是一致的。因此,问题可能出现在数据生成的过程中。 可以尝试以下修改,将数据生成的过程和变量命名的过程分开: ```R # 生成随机数据集 set.seed(1) data <- matrix(rnorm(50*30), nrow = 50) y1 <- data %*% rnorm(30, mean = 2, sd = 0.5) y2 <- data %*% rnorm(30, mean = 1, sd = 0.3) y3 <- data %*% rnorm(30, mean = 3, sd = 0.7) # 将数据转换为data.frame类型,并且为变量命名 data <- as.data.frame(data) colnames(data) <- paste0("V", 1:30) # 线性回归模型 lm.fit1 <- lm(y1 ~ ., data = data) lm.fit2 <- lm(y2 ~ ., data = data) lm.fit3 <- lm(y3 ~ ., data = data) # 将数据转换为numeric类型 data <- as.data.frame(lapply(data, as.numeric)) # 计算 CV 值 library(boot) cv.error1 <- cv.glm(data, lm.fit1)$delta[1] ``` 这样可以确保数据的每一列都被正确地命名,并且在生成数据时也不会出现问题。如果还有其他问题,可以再进一步检查。

相关推荐

x=read.table("D:\大二下\多元统计分析\shuju\距离判别.txt",header = T) x class=factor(x[,1])#转化为因子型 x=x[,-1] g=length(levels(class))#类别数 L=ncol(x)#指标数 nx=nrow(x)#样品数 mu=matrix(0,nrow=g,ncol=L)#均值 s=list()#协方差 for (i in 1:g) { mu[i,]=colMeans(x[class==i,]) s[[i]]=cov(x[class==i,]) } shf=matrix(0,nrow=L,ncol=L) for (i in 1:length(s)) { n=length(class[class==i]) shf=shf+(n-1)s[[i]] } sh=shf/(nx-g) D=matrix(0,nrow = nx,ncol=g)#马氏平方距离 for (i in 1:g) { for (j in 1:nx) { #D[j,i]=as.matrix(x[j,]-mu[i,])%%solve(sh)%%t(x[j,]-mu[i,]) D[j,i]=mahalanobis(as.matrix(x[j,]),mu[i,],sh) } } D x=c(8.06,231.03,14.41,5.72,6.15) x1=c(9.89,409.42,19.47,5.19,10.49) matrix(x,ncol=L) mahalanobis(matrix(x1,ncol=L),mu[1,],sh) #回代估计法 lei=c() for (i in 1:nx) { lei[i]=which.min(D[i,]) } lei for (i in 1:nx) { n[i]=ifelse(class[i]==lei[i],0,1) } p=sum(n)/nx#回代误判率 #交叉确认估计法 y=read.table("D:\大二下\多元统计分析\shuju\距离判别.txt",header = T) L=ncol(y[,-1])#指标数 nx=nrow(y)#样品数 lei=c() nn=c() for (k in 1:nx) { x=y[-k,] class=factor(x[,1]) g=length(levels(class))#类别数 x=x[,-1] nnx=nx-1 mu=matrix(0,nrow=g,ncol=L)#均值 s=list()#协方差 for (i in 1:g) { mu[i,]=colMeans(x[class==i,]) s[[i]]=cov(x[class==i,]) } shf=matrix(0,nrow=L,ncol=L) for (j in 1:length(s)) { n=length(class[class==j]) shf=shf+(n-1)s[[j]] } sh=shf/(nnx-g) D=c()#剔除样品的马氏平方距离 for (m in 1:g) { #D[m]=as.matrix(y[k,-1]-mu[m,])%%solve(sh)%%t(y[k,-1]-mu[m,]) D[m]=mahalanobis(as.matrix(y[k,-1]),mu[m,],sh) } lei[k]=which.min(D)#剔除样本判断的所属类别 nn[k]=ifelse(y[k,1]==lei[k],0,1)#误判时n为1 } x[which(class!=lei)] p=sum(nn)/nx#交叉确认误判率 nn lei利用此代码实现多个总体的bayes判别(假定各个总体的协方差相等)

基于以下R代码:# ①建立50×30的随机数据和30个变量 set.seed(123) X <- matrix(rnorm(50*30), ncol=30) y <- rnorm(50) # ②生成三组不同系数的线性模型 beta1 <- rnorm(30, mean=1, sd=0.5) beta2 <- rnorm(30, mean=2, sd=0.5) beta3 <- rnorm(30, mean=3, sd=0.5) # 定义一个函数用于计算线性回归的CV值 cv_linear <- function(X, y, k=10, lambda=NULL) { n <- nrow(X) if (is.null(lambda)) { lambda <- seq(0, 1, length.out=100) } mse <- rep(0, length(lambda)) folds <- sample(rep(1:k, length.out=n)) for (i in 1:k) { X_train <- X[folds!=i, ] y_train <- y[folds!=i] X_test <- X[folds==i, ] y_test <- y[folds==i] for (j in 1:length(lambda)) { fit <- glmnet(X_train, y_train, alpha=0, lambda=lambda[j]) y_pred <- predict(fit, newx=X_test) mse[j] <- mse[j] + mean((y_test - y_pred)^2) } } mse <- mse / k return(mse) } # ③(线性回归中)分别计算这三组的CV值 lambda <- seq(0, 1, length.out=100) mse1 <- cv_linear(X, y, lambda=lambda) mse2 <- cv_linear(X, y, lambda=lambda) mse3 <- cv_linear(X, y, lambda=lambda) # ④(岭回归中)分别画出这三组的两张图,每组两张图均以lambda为横坐标: library(glmnet) par(mfrow=c(2,3)) # 画Beta1的CV error图 plot(lambda, mse1, type="l", xlab="lambda", ylab="CV error", main="Beta1 CV error") # 画Beta1的Prediction error图 fit1 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse1)]) y_pred1 <- as.vector(predict(fit1, newx=X)) pred_error1 <- mean((y - y_pred1)^2) lambda <- as.vector(lambda) pred_error1 <- as.vector(pred_error1) if (length(lambda) != length(pred_error1)) { if (length(lambda) > length(pred_error1)) { pred_error1 <- rep(pred_error1, length.out = length(lambda)) } else { lambda <- rep(lambda, length.out = length(pred_error1)) } } plot(lambda, pred_error1, type="l", xlab="lambda", ylab="Prediction error", main="Beta1 Prediction error") # 画Beta2的CV error图 plot(lambda, mse2, type="l", xlab="lambda", ylab="CV error", main="Beta2 CV error") # 画Beta2的Prediction error图 fit2 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse2)]) y_pred2 <- predict(fit2, newx=X) pred_error2 <- mean((y - y_pred2)^2) plot(lambda, pred_error2, type="l", xlab="lambda", ylab="Prediction error", main="Beta2 Prediction error") # 画Beta3的CV error图 plot(lambda, mse3, type="l", xlab="lambda", ylab="CV error", main="Beta3 CV error") # 画Beta3的Prediction error图 fit3 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse3)]) y_pred3 <- predict(fit3, newx=X) pred_error3 <- mean((y - y_pred3)^2) plot(lambda, pred_error3, type="l", xlab="lambda", ylab="Prediction error", main="Beta3 Prediction error")。对每组的预测误差图进行代码修改

请在以下R代码基础上:# ①建立50×30的随机数据和30个变量 set.seed(123) X <- matrix(rnorm(50*30), ncol=30) y <- rnorm(50) # ②生成三组不同系数的线性模型 beta1 <- rnorm(30, mean=1, sd=0.5) beta2 <- rnorm(30, mean=2, sd=0.5) beta3 <- rnorm(30, mean=3, sd=0.5) # 定义一个函数用于计算线性回归的CV值 cv_linear <- function(X, y, k=10, lambda=NULL) { n <- nrow(X) if (is.null(lambda)) { lambda <- seq(0, 1, length.out=100) } mse <- rep(0, length(lambda)) folds <- sample(rep(1:k, length.out=n)) for (i in 1:k) { X_train <- X[folds!=i, ] y_train <- y[folds!=i] X_test <- X[folds==i, ] y_test <- y[folds==i] for (j in 1:length(lambda)) { fit <- glmnet(X_train, y_train, alpha=0, lambda=lambda[j]) y_pred <- predict(fit, newx=X_test) mse[j] <- mse[j] + mean((y_test - y_pred)^2) } } mse <- mse / k return(mse) } # ③(线性回归中)分别计算这三组的CV值 lambda <- seq(0, 1, length.out=100) mse1 <- cv_linear(X, y, lambda=lambda) mse2 <- cv_linear(X, y, lambda=lambda) mse3 <- cv_linear(X, y, lambda=lambda) # ④(岭回归中)分别画出这三组的两张图,每组两张图均以lambda为横坐标: library(glmnet) par(mfrow=c(2,3)) # 画Beta1的CV error图 plot(lambda, mse1, type="l", xlab="lambda", ylab="CV error", main="Beta1 CV error") # 画Beta1的Prediction error图 fit1 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse1)]) y_pred1 <- as.vector(predict(fit1, newx=X)) pred_error1 <- mean((y - y_pred1)^2) lambda <- as.vector(lambda) pred_error1 <- as.vector(pred_error1) if (length(lambda) != length(pred_error1)) { if (length(lambda) > length(pred_error1)) { pred_error1 <- rep(pred_error1, length.out = length(lambda)) } else { lambda <- rep(lambda, length.out = length(pred_error1)) } } plot(lambda, pred_error1, type="l", xlab="lambda", ylab="Prediction error", main="Beta1 Prediction error") # 画Beta2的CV error图 plot(lambda, mse2, type="l", xlab="lambda", ylab="CV error", main="Beta2 CV error") # 画Beta2的Prediction error图 fit2 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse2)]) y_pred2 <- predict(fit2, newx=X) pred_error2 <- mean((y - y_pred2)^2) plot(lambda, pred_error2, type="l", xlab="lambda", ylab="Prediction error", main="Beta2 Prediction error") # 画Beta3的CV error图 plot(lambda, mse3, type="l", xlab="lambda", ylab="CV error", main="Beta3 CV error") # 画Beta3的Prediction error图 fit3 <- glmnet(X, y, alpha=0, lambda=lambda[which.min(mse3)]) y_pred3 <- predict(fit3, newx=X) pred_error3 <- mean((y - y_pred3)^2) plot(lambda, pred_error3, type="l", xlab="lambda", ylab="Prediction error", main="Beta3 Prediction error")。对每组数据绘制纵坐标为Prediction error的图的代码进行修改

Make sure that we grade your HW based solely on your R code script. If we don’t see the correct results when we run your code, you will get 0 point for those questions. 1. Create a R function to show the central limit theorem. This function should have the following properties: - In the argument of the function, you have an option to consider poisson, exponential, uniform, normal distributions as the population distribution. - Depending on the choice of the population distribution in part (1), the function will receive extra argument(s) for the parameters of the distribution. For example, if a normal distri- bution is chosen, the mean and SD are needed in the function argument. Note that each distribution has a different parameter setting. - If the distribution is not selected from (“Normal”, “Poisson”, “Uniform”, “Exponential”), the function needs to print the following error message: check the distributional setting: consider ("Normal", "Poisson", "Uniform", "Exponential") and stop. - The function should give the summary statistics (minimum, 1st quartile, median, mean, 3rd quartile, maximum) of 1, 000 sample mean values for given n values (n = 10, 50, 100, 500). - The result should have the following statement at the beginning, for example, if a normal distribution with mean 1 and SD 0.5 was chosen: ‘‘For the Normal distribution, the central limit theorem is tested’’ where the term “Normal” is automatically inserted in the statement based on the argument. And the output should have the following form: For the Normal distribution, the central limit theorem is tested When n=10: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5187 0.8930 1.0016 0.9993 1.1019 1.4532 When n=50: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.7964 0.9508 1.0010 0.9997 1.0493 1.2309 1 When n=100: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.8534 0.9679 0.9972 0.9992 1.0325 1.1711 When n=500: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.9258 0.9836 1.0006 0.9997 1.0154 1.0678 I Using your own function, test the N(−1,0.52) and the Unif(−3,6) case.

最新推荐

recommend-type

基于HTML+CSS+JS开发的网站-时装品牌网店响应式网站.7z

探索全栈前端技术的魅力:HTML+CSS+JS+JQ+Bootstrap网站源码深度解析 在这个数字化时代,构建一个既美观又功能强大的网站成为了许多开发者和企业追逐的目标。本份资源精心汇集了一套完整网站源码,融合了HTML的骨架搭建、CSS的视觉美化、JavaScript的交互逻辑、jQuery的高效操作以及Bootstrap的响应式设计,全方位揭秘了现代网页开发的精髓。 HTML,作为网页的基础,它构建了信息的框架;CSS则赋予网页生动的外观,让设计创意跃然屏上;JavaScript的加入,使网站拥有了灵动的交互体验;jQuery,作为JavaScript的强力辅助,简化了DOM操作与事件处理,让编码更为高效;而Bootstrap的融入,则确保了网站在不同设备上的完美呈现,响应式设计让访问无界限。 通过这份源码,你将: 学习如何高效组织HTML结构,提升页面加载速度与SEO友好度; 掌握CSS高级技巧,如Flexbox与Grid布局,打造适应各种屏幕的视觉盛宴; 理解JavaScript核心概念,动手实现动画、表单验证等动态效果; 利用jQuery插件快速增强用户体验,实现滑动效果、Ajax请求等; 深入Bootstrap框架,掌握移动优先的开发策略,响应式设计信手拈来。 无论是前端开发新手渴望系统学习,还是资深开发者寻求灵感与实用技巧,这份资源都是不可多得的宝藏。立即深入了解,开启你的全栈前端探索之旅,让每一个网页都成为技术与艺术的完美融合!
recommend-type

springboot校园志愿者管理系统(源码+lw+ppt+演示视频).rar

随着信息化时代的到来,管理系统都趋向于智能化、系统化,校园志愿者管理系统也不例外,但目前国内仍都使用人工管理,市场规模越来越大,同时信息量也越来越庞大,人工管理显然已无法应对时代的变化,而校园志愿者管理系统能很好地解决这一问题,轻松应对校园志愿者平时的工作,既能提高人力物力财力,又能加快工作的效率,取代人工管理是必然趋势。 本校园志愿者管理系统以springboot作为框架,b/s模式以及MySql作为后台运行的数据库,同时使用Tomcat用为系统的服务器。本系统主要包括首页、个人中心、志愿者管理、活动类型管理、活动信息管理、活动报名管理、活动通知管理、活动心得管理、交流反馈、系统管理等功能,通过这些功能的实现基本能够满足日常校园志愿者管理的操作。 本文着重阐述了校园志愿者管理系统的分析、设计与实现,首先介绍开发系统和环境配置、数据库的设计,接着说明功能模块的详细实现,最后进行了总结。 关键词:校园志愿者; springboot;MySql数据库;Tomcat;
recommend-type

中国象棋源码( vs2010) 界面、音效、算法、人机对抗

支持多种棋盘,支持人机对战,支持走棋音效,支持悔棋,人工智能 vs2010 编写
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**