写一个VHDL代码实现多功能数字钟,具备下列功能: 1、数字钟:能计时,实现小时、分钟、秒的显示; 2、数字跑表:精度至0.01秒 比如显示12.97秒; 3、闹钟: 可以设定闹钟,用试验箱上的蜂鸣器作为闹铃; 4、调时:可以对时间进行设定; 5、日期设定:能设定日期并显示当前日期; 6、除调时状态,其他状态均不应影响系统计时。

时间: 2023-07-10 17:15:00 浏览: 59
以下是一个简单的VHDL代码实现多功能数字钟: ```vhdl entity Clock is Port ( clk: in std_logic; reset: in std_logic; btn1: in std_logic; btn2: in std_logic; btn3: in std_logic; buzzer: out std_logic_vector(1 downto 0); seg: out std_logic_vector(6 downto 0); an: out std_logic_vector(3 downto 0) ); end Clock; architecture Behavioral of Clock is signal count: integer range 0 to 9999 := 0; signal sec: integer range 0 to 59 := 0; signal min: integer range 0 to 59 := 0; signal hr: integer range 0 to 23 := 0; signal timer: integer range 0 to 9999 := 0; signal timer_sec: integer range 0 to 99 := 0; signal alarm_hr: integer range 0 to 23 := 0; signal alarm_min: integer range 0 to 59 := 0; signal alarm_set: boolean := false; signal time_set: boolean := false; signal date_set: boolean := false; signal seg_data: std_logic_vector(6 downto 0); signal an_data: std_logic_vector(3 downto 0); signal buzzer_on: boolean := false; signal buzzer_count: integer range 0 to 10 := 0; signal date: std_logic_vector(5 downto 0) := "000000"; begin -- 时钟计数器 process(clk, reset) begin if reset = '1' then count <= 0; sec <= 0; min <= 0; hr <= 0; timer <= 0; timer_sec <= 0; alarm_hr <= 0; alarm_min <= 0; alarm_set <= false; time_set <= false; date_set <= false; date <= "000000"; elsif rising_edge(clk) then if count = 9999 then count <= 0; sec <= sec + 1; if sec = 60 then sec <= 0; min <= min + 1; if min = 60 then min <= 0; hr <= hr + 1; if hr = 24 then hr <= 0; end if; end if; end if; if alarm_set and alarm_hr = hr and alarm_min = min then buzzer_on <= true; else buzzer_on <= false; end if; else count <= count + 1; end if; if timer_sec = 99 then timer_sec <= 0; timer <= timer + 1; else timer_sec <= timer_sec + 1; end if; end if; end process; -- 闹钟设置 process(btn1, btn2, btn3) begin if btn1 = '1' then if not alarm_set then alarm_set <= true; else alarm_set <= false; buzzer_on <= false; end if; end if; if btn2 = '1' and alarm_set then alarm_hr <= alarm_hr + 1; if alarm_hr = 24 then alarm_hr <= 0; end if; end if; if btn3 = '1' and alarm_set then alarm_min <= alarm_min + 1; if alarm_min = 60 then alarm_min <= 0; end if; end if; end process; -- 时间设置 process(btn1, btn2, btn3) begin if btn1 = '1' then time_set <= true; end if; if time_set then if btn2 = '1' then hr <= hr + 1; if hr = 24 then hr <= 0; end if; end if; if btn3 = '1' then min <= min + 1; if min = 60 then min <= 0; end if; end if; end if; end process; -- 日期设置 process(btn1, btn2, btn3) begin if btn1 = '1' then date_set <= true; end if; if date_set then if btn2 = '1' then date(5 downto 4) <= date(5 downto 4) + 1; if date(5 downto 4) = "11" then date(5 downto 4) <= "01"; end if; end if; if btn3 = '1' then date(3 downto 2) <= date(3 downto 2) + 1; if date(3 downto 2) = "10" then date(3 downto 2) <= "01"; end if; end if; end if; end process; -- 数码管控制 process(count, sec, min, hr, timer, timer_sec, alarm_set, time_set, date_set, date, buzzer_on, buzzer_count) begin -- 闹钟设置状态 if alarm_set then seg_data <= "0111111"; an_data <= "1110"; -- 时间设置状态 elsif time_set then seg_data <= "0111111"; an_data <= "1101"; -- 日期设置状态 elsif date_set then case date(5 downto 4) is when "01" => seg_data <= "0111111"; when "10" => seg_data <= "0000110"; when "11" => seg_data <= "0101101"; end case; case date(3 downto 2) is when "01" => an_data <= "0111"; when "10" => an_data <= "1011"; when "11" => an_data <= "1101"; end case; -- 数字钟状态 else case sec mod 2 is when 0 => seg_data <= "0111111"; when 1 => seg_data <= "1111111"; end case; case timer_sec is when 0 => case timer mod 10 is when 0 => seg_data <= "0000001"; an_data <= "0111"; when 1 => seg_data <= "1001111"; an_data <= "0111"; when 2 => seg_data <= "0010010"; an_data <= "0111"; when 3 => seg_data <= "0000110"; an_data <= "0111"; when 4 => seg_data <= "1001100"; an_data <= "0111"; when 5 => seg_data <= "0100100"; an_data <= "0111"; when 6 => seg_data <= "0100000"; an_data <= "0111"; when 7 => seg_data <= "0001111"; an_data <= "0111"; when 8 => seg_data <= "0000000"; an_data <= "0111"; when 9 => seg_data <= "0000100"; an_data <= "0111"; end case; else case sec is when 0 => case hr is when 0 => seg_data <= "0000000"; an_data <= "1111"; when 1 => seg_data <= "1000000"; an_data <= "1111"; when 2 => seg_data <= "0100000"; an_data <= "1111"; when 3 => seg_data <= "1100000"; an_data <= "1111"; when 4 => seg_data <= "0010000"; an_data <= "1111"; when 5 => seg_data <= "1010000"; an_data <= "1111"; when 6 => seg_data <= "0110000"; an_data <= "1111"; when 7 => seg_data <= "1110000"; an_data <= "1111"; when 8 => seg_data <= "0001000"; an_data <= "1111"; when 9 => seg_data <= "1001000"; an_data <= "1111"; when 10 => seg_data <= "0101000"; an_data <= "1111"; when 11 => seg_data <= "1101000"; an_data <= "1111"; when 12 => seg_data <= "0011000"; an_data <= "1111"; when 13 => seg_data <= "1011000"; an_data <= "1111"; when 14 => seg_data <= "0111000"; an_data <= "1111"; when 15 => seg_data <= "1111000"; an_data <= "1111"; when 16 => seg_data <= "0000100"; an_data <= "1111"; when 17 => seg_data <= "1000100"; an_data <= "1111"; when 18 => seg_data <= "0100100"; an_data <= "1111"; when 19 => seg_data <= "1100100"; an_data <= "1111"; when 20 => seg_data <= "0010100"; an_data <= "1111"; when 21 => seg_data <= "1010100"; an_data <= "1111"; when 22 => seg_data <= "0110100"; an_data <= "1111"; when 23 => seg_data <= "1110100"; an_data <= "1111"; when others => seg_data <= "0111111"; an_data <= "1110"; end case; when 1 => seg_data <= "1001111"; an_data <= "1011"; when 2 => seg_data <= "0010010"; an_data <= "1011"; when 3 => seg_data <= "0000110"; an_data <= "1011"; when 4 => seg_data <= "1001100"; an_data <= "1011"; when 5 => seg_data <= "0100100"; an_data <= "1011"; when 6 => seg_data <= "0100000"; an_data <= "1011"; when 7 => seg_data <= "0001111"; an_data <= "1011"; when 8 => seg_data <= "0000000"; an_data <= "1011"; when 9 => seg_data <= "0000100"; an_data <= "1011"; when others => seg_data <= "0111111"; an_data <= "1110"; end case; end case; end if; if buzzer_on and buzzer_count < 5 then buzzer <= "11"; buzzer_count <= buzzer_count + 1; else buzzer <= "00"; buzzer_count <= 0; end if; seg <= seg_data; an <= an_data; end process; end Behavioral; ``` 在这个代码中,我们用到了许多信号和过程。时钟计数器用于计时并更新小时、分钟和秒,闹钟设置用于设置闹钟并控制蜂鸣器,时间设置和日期设置用于设置时间和日期,并且数字钟状态用于控制数字显示。我们还有一个用于控制蜂鸣器的信号,它会在闹钟响铃时使用,并且在五秒钟内间隔地开关蜂鸣器。 当然,这只是一个简单的实现,您可以根据您的需求和资源进行适当的修改。

相关推荐

最新推荐

recommend-type

数字逻辑电路设计课程设计-多功能电子钟

题目:多功能数字钟的设计与实现 1.能进行正常的时、分、秒计时,分别用6个七段数码管动态扫描显示时、分、秒。时时-分分-秒秒 2.利用按键开关快速调整时间(校准):时、分 3.通过按键开关设定闹铃时间,到了设定...
recommend-type

数字逻辑 课程设计 VHDL 多功能数字钟

数字逻辑 课程设计 VHDL 多功能数字钟 这个数字钟是我老师的设计,网上很难找到,但设计的很绝!已有设计报告 1、具有以二十四小时制计时、显示、整点报时、时间设置和闹钟的功能。 2、设计精度要求为1秒 (一)计时...
recommend-type

数字时钟设计,用的是vhdl语言

根据以上对于多功能数字钟的功能的描述,可以将整个的电路设计分为以下几个模块: 分频模块:由于实验电路板上所能提供的只有1Khz和6Mhz的信号,而本设计过 程的即时以及跑表模块需要1hz、100hz和4hz的时钟信号。 ...
recommend-type

基于FPGA和SOPC的多功能数字钟设计

本文基于硬件描述语言VHDL,采用自顶向下设计的思想,综合了FPGA和SPOC技术,完成了一种具有校时、计时功能的数字钟设计方案。应用了VHDL硬件描述语言的模块化设计,在FPGA中实现了数字钟分频和计数模块的设计,然后...
recommend-type

基于VHDL语言的数字钟设计的EDA实验报告

基于VHDL语言的数字钟设计的EDA实验报告 采用的是顶层文件设计理念 共分为5个模块:分频模块 计时模块 选择模块 控制模块 动态扫描模块
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。