X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c)什么意思
时间: 2024-01-16 14:05:18 浏览: 116
这段代码是将一个数据集中的特征和目标变量进行处理和转换的过程,具体含义如下:
- `np.array(data)[:,1:-1]` 表示将 `data` 数据集中除了第一列和最后一列(即特征和目标列)之外的所有数据转换成一个 NumPy 数组,`astype(float)` 则表示将这些数据转换成浮点数类型。
- `target2idx(data['target'])` 表示将 `data` 数据集中的目标列(即标签列)进行转换,将每个目标值转换成一个整数,这个转换过程可能是为了便于后续处理。
- `convert_to_vectors(c)` 表示将上一步中转换得到的整数目标值 `c` 进一步转换成一个独热编码向量,即将每个整数目标值转换成一个只有该位置为 1,其他位置为 0 的向量,这个向量的长度等于目标值的个数,这个转换过程是为了适配一些机器学习模型的输入要求。
相关问题
#target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)#模型训练及预测#计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码
这段代码是一个完整的机器学习流程,包括了数据获取、数据预处理、模型训练和评估等步骤。以下是补全的代码:
```
# 导入必要的库和函数
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# 将目标变量中的类别标签转化为数字型的索引
def target2idx(targets):
target_idx = []
target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10']
for target in targets:
target_idx.append(target_labels.index(target))
return target_idx
# 将分类问题中的目标变量转化为独热编码向量
def convert_to_vectors(c):
m = len(c)
k = np.max(c) + 1
y = np.zeros(m * k).reshape(m,k)
for i in range(m):
y[i][c[i]] = 1
return y
# 对特征进行预处理
def process_features(X):
scaler = MinMaxScaler(feature_range=(0,1))
X = scaler.fit_transform(1.0*X)
m, n = X.shape
X = np.c_[np.ones((m, 1)), X]
return X
# 数据获取及预处理
data = pd.read_csv('data.csv')
X = np.array(data)[:,1:-1].astype(float)
c = target2idx(data['target'])
y = convert_to_vectors(c)
X = process_features(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)
# 模型训练
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=0, multi_class='multinomial', solver='newton-cg')
clf.fit(X_train, c_train)
# 模型预测
c_pred = clf.predict(X_test)
# 计算指标
accuracy = accuracy_score(c_test, c_pred)
precision = precision_score(c_test, c_pred,average = 'weighted')
recall = recall_score(c_test, c_pred,average = 'weighted')
f1 = f1_score(c_test, c_pred,average = 'weighted')
# 输出结果
print("accuracy = {}".format(accuracy))
print("precision = {}".format(precision))
print("recall = {}".format(recall))
print("f1 = {}".format(f1))
```
该代码首先读入数据,然后对目标变量进行转化,特征进行预处理,再将数据划分为训练集和测试集。接着,使用LogisticRegression模型进行训练,并进行预测。最后,计算分类指标,分别输出accuracy、precision、recall和f1值。
#倒入相关库文件 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split #首先我们先观察一下数据的总体描述 data = pd.read_csv('data.csv') data.describe(include='all') #观察数据的任意五行 data.sample(5) sns.countplot(data["target"]) plt.show() #target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵 def target2idx(targets): target_idx = [] target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10'] for target in targets: target_idx.append(target_labels.index(target)) return target_idx #向量转化函数(提供参考,自行选择是否使用) def convert_to_vectors(c): m = len(c) k = np.max(c) + 1 y = np.zeros(m * k).reshape(m,k) for i in range(m): y[i][c[i]] = 1 return y #特征处理函数(提供参考,自行选择是否使用) def process_features(X): scaler = MinMaxScaler(feature_range=(0,1)) X = scaler.fit_transform(1.0*X) m, n = X.shape X = np.c_[np.ones((m, 1)), X] return X #数据获取样例,可自行处理 X = np.array(data)[:,1:-1].astype(float) c = target2idx(data['target']) y = convert_to_vectors(c) #划分训练集和测试集比例在0.1-0.9之间 X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2) #模型训练及预测 #计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告 accuracy = accuracy_score(c_test, c_pred) precision = precision_score(c_test, c_pred,average = 'weighted') recall = recall_score(c_test, c_pred,average = 'weighted') f1 = f1_score(c_test, c_pred,average = 'weighted') print("accuracy = {}".format(accuracy)) print("precision = {}".format(precision)) print("recall = {}".format(recall)) print("f1 = {}".format(f1))补全代码
以下是代码补全:
```
#导入相关库文件
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
#首先我们先观察一下数据的总体描述
data = pd.read_csv('data.csv')
data.describe(include='all')
#观察数据的任意五行
data.sample(5)
sns.countplot(data["target"])
plt.show()
#target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵
def target2idx(targets):
target_idx = []
target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10']
for target in targets:
target_idx.append(target_labels.index(target))
return target_idx
#向量转化函数(提供参考,自行选择是否使用)
def convert_to_vectors(c):
m = len(c)
k = np.max(c) + 1
y = np.zeros(m * k).reshape(m,k)
for i in range(m):
y[i][c[i]] = 1
return y
#特征处理函数(提供参考,自行选择是否使用)
def process_features(X):
scaler = MinMaxScaler(feature_range=(0,1))
X = scaler.fit_transform(1.0*X)
m, n = X.shape
X = np.c_[np.ones((m, 1)), X]
return X
#数据获取样例,可自行处理
X = np.array(data)[:,1:-1].astype(float)
c = target2idx(data['target'])
y = convert_to_vectors(c)
#划分训练集和测试集比例在0.1-0.9之间
X_train, X_test, y_train, y_test, c_train, c_test = train_test_split(X, y, c, random_state = 0, test_size = 0.2)
#模型训练及预测
#计算指标,本指标使用加权的方式计算多分类问题,accuracy和recall相等,可将其原因写入报告
accuracy = accuracy_score(c_test, c_pred)
precision = precision_score(c_test, c_pred,average = 'weighted')
recall = recall_score(c_test, c_pred,average = 'weighted')
f1 = f1_score(c_test, c_pred,average = 'weighted')
print("accuracy = {}".format(accuracy))
print("precision = {}".format(precision))
print("recall = {}".format(recall))
print("f1 = {}".format(f1))
```
阅读全文