fig = plt.figure(figsize=[5,5],dpi=300) h=plt.hist2d(df['下行用户平均速率(Mbit/s)'], df['下行PRB平均利用率(%)'], bins=40,cmap=plt.cm.Spectral_r,cmin =1) ax=plt.gca() ax.set_xlabel('下行用户平均速率(Mbit/s)') ax.set_ylabel('下行PRB平均利用率(%)') cbar=plt.colorbar(h[3]) cbar.set_label('count') # Display the plot plt.tight_layout() plt.savefig('./bin-plot1.tiff', dpi=600, bbox_inches = 'tight', facecolor='w') plt.show() 这段代码是什么意思
时间: 2024-01-16 18:02:33 浏览: 92
这段代码使用Python的matplotlib库绘制了一个二维直方图。具体来说,代码中的`plt.hist2d()`函数用于计算并绘制二维直方图,其中`df['下行用户平均速率(Mbit/s)']`和`df['下行PRB平均利用率(%)']`是要绘制的数据,`bins=40`指定了直方图的箱子数,`cmap=plt.cm.Spectral_r`指定了使用的颜色映射,`cmin=1`指定了最小计数,即只绘制计数大于等于1的数据点。
接下来,代码使用`plt.gca()`获取当前的图形轴对象,并使用`ax.set_xlabel()`和`ax.set_ylabel()`设置x轴和y轴的标签。
然后,代码使用`plt.colorbar()`添加一个颜色条,并使用`cbar.set_label()`设置颜色条的标签。
最后,代码使用`plt.tight_layout()`调整子图布局以避免重叠,并使用`plt.savefig()`保存图形为tiff格式的文件,dpi参数指定了图形的分辨率,bbox_inches参数指定了要保存的部分,facecolor参数指定了图形的背景色,最后使用`plt.show()`显示图形。
相关问题
def tsplot(y, lags=None, title='', figsize=(14, 8)): fig = plt.figure(figsize=figsize) layout = (2, 2) ts_ax = plt.subplot2grid(layout, (0, 0)) hist_ax = plt.subplot2grid(layout, (0, 1)) acf_ax = plt.subplot2grid(layout, (1, 0)) pacf_ax = plt.subplot2grid(layout, (1, 1))
这是一个 Python 函数,用于绘制时间序列的图形,其中 y 是时间序列数据,lags 是滞后值,title 是图形的标题,figsize 是图形的大小。函数中使用了 matplotlib 库来绘制图形,其中 layout 是一个元组,用于指定图形的布局,ts_ax、hist_ax、acf_ax 和 pacf_ax 分别是四个子图的坐标轴对象。
types = df['type'].unique() labels = types.tolist() fig = plt.figure(figsize=(8, 6)) ax = plt.subplot(111) b_num = np.arange(0, 10.5, 0.5) for t in types: ax.hist(df.loc[df['type'] == t, 'rating'], bins=b_num, rwidth=0.9, alpha=0.6, label=t, ) ax.legend() ax.set_xlabel('rating') ax.set_ylabel(r'Count(rating)') plt.show()重叠绘制直方图,输出效果达到每个间距的值是累加后的值
要实现每个间距的值是累加后的值,可以在循环中统计各个type的直方图数据,并将数据进行累加。然后将累加后的数据绘制为堆积直方图,示例代码如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 生成数据
df = pd.DataFrame({
'type': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C'],
'rating': [7.5, 8.2, 9.1, 6.7, 7.8, 8.5, 7.2, 8.9, 6.6, 8.3, 8.1, 7.4]
})
# 统计各个type的直方图数据,并将数据进行累加
types = df['type'].unique()
labels = types.tolist()
b_num = np.arange(0, 10.5, 0.5)
hist_data = []
for t in types:
hist, bins = np.histogram(df.loc[df['type'] == t, 'rating'], bins=b_num)
hist_data.append(hist)
hist_data = np.vstack(hist_data)
hist_data = np.cumsum(hist_data, axis=0)
# 绘制堆积直方图
fig = plt.figure(figsize=(8, 6))
ax = plt.subplot(111)
for i, t in enumerate(types):
ax.bar(b_num[:-1], hist_data[i], label=t, alpha=0.6)
ax.legend()
ax.set_xlabel('rating')
ax.set_ylabel(r'Count(rating)')
plt.show()
```
其中,`hist, bins = np.histogram(df.loc[df['type'] == t, 'rating'], bins=b_num)`用于统计各个type的直方图数据,`hist_data.append(hist)`将直方图数据进行累加,`hist_data = np.vstack(hist_data)`将数据转换为二维数组,`hist_data = np.cumsum(hist_data, axis=0)`将数据进行累加。最后使用`ax.bar(b_num[:-1], hist_data[i], label=t, alpha=0.6)`绘制堆积直方图。