# t test sigma2hat = np.sum((y-beta0_hat-beta1_hat*x)**2)/(100-2) sebeta1 =np.sqrt(sigma2hat/np.sum((x-x.mean())**2)) t = beta1_hat/sebeta1 print(t) import scipy.stats as stats key_value = stats.t.ppf(0.975,98) print(key_value) t>key_value p_ =1- stats.t.cdf(t,98) p_

时间: 2024-03-31 10:34:15 浏览: 31
这段代码进行了一个 t 检验,用来检验线性回归模型中自变量 x 的系数是否显著。具体来说,这段代码的主要步骤包括: 1. 根据回归模型的拟合结果,计算残差平方和 sigma2hat 和自变量 x 系数的标准误 sebeta1。 2. 根据 t 值的公式,计算 t 值,即自变量 x 系数的估计值 beta1_hat 除以标准误 sebeta1。 3. 使用 scipy.stats.t.ppf 方法计算自由度为 98 的 t 分布上 0.975 分位点对应的值(双尾检验)。 4. 判断 t 值是否大于 0.975 分位点对应的值,如果是,则拒绝原假设,即认为自变量 x 的系数显著;否则,接受原假设。 5. 如果需要计算 p 值,可以使用 scipy.stats.t.cdf 方法来计算自由度为 98 的 t 分布上 t 值对应的累积分布函数值,然后将其与 1 相减即可。 需要注意的是,这段代码中的自由度 98 是根据样本数量 100 和模型中的两个参数(常数项和自变量 x 的系数)计算得出的。在实际使用中,自由度的计算可能会有所不同,具体要根据问题的具体情况来确定。另外,t 检验的结果仅仅是对原假设的判断,不能说明因果关系或者相关性的方向。
相关问题

# F test sst = np.sum((y-y.mean())**2) ssr = np.sum((y-beta0_hat-beta1_hat*x)**2) Fstat = (sst-ssr)/1/(ssr/(100-2)) print(Fstat) key_value2 = stats.f.ppf(0.95,1,98) print(key_value2)

这段代码实现了一个 F 检验,用于检验线性回归模型的拟合优度是否显著。其中,sst 表示总平方和,ssr 表示残差平方和,Fstat 表示 F 统计量的值。这里的 F 统计量是通过总平方和和残差平方和的比值计算得到的,它反映了线性回归模型的拟合优度。如果 F 统计量越大,说明模型的拟合效果越好,反之则拟合效果越差。 在这段代码中,使用了 scipy.stats.f.ppf 方法来计算自由度为 1 和 98 的 F 分布上 0.95 分位点对应的值,即单尾检验中的临界值。这个关键值的意义是,在显著性水平为 0.05 时,自由度为 1 和 98 的 F 分布上,有 95% 的概率落在右侧的临界值位置,因此在单尾检验中,如果 F 统计量超过了这个关键值,就可以拒绝原假设,认为模型的拟合效果是显著的。如果 F 统计量小于这个关键值,则不能拒绝原假设,认为模型的拟合效果不显著。 最后,代码中打印出了 F 统计量的值和自由度为 1 和 98 的 F 分布上 0.95 分位点对应的值,用于比较 F 统计量和关键值的大小,从而判断模型的拟合效果是否显著。

class RNN: def init(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化参数 self.Wxh = np.random.randn(hidden_size, input_size) * 0.01 # 输入层到隐藏层的权重矩阵 self.Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # 隐藏层到隐藏层的权重矩阵 self.Why = np.random.randn(output_size, hidden_size) * 0.01 # 隐藏层到输出层的权重矩阵 self.bh = np.zeros((hidden_size, 1)) # 隐藏层偏置 self.by = np.zeros((output_size, 1)) # 输出层偏置 # 初始化隐藏状态 self.h = np.zeros((hidden_size, 1)) def forward(self, x): # 更新隐藏状态 self.h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, self.h) + self.bh) # 计算输出 y = np.dot(self.Why, self.h) + self.by # 返回输出和隐藏状态 return y, self.h def backward(self, x, y, target, learning_rate): # 计算输出误差 dy = y - target # 计算隐藏状态误差 dh = np.dot(self.Why.T, dy) * (1 - self.h ** 2) # 计算权重和偏置的梯度 dWhy = np.dot(dy, self.h.T) dby = np.sum(dy, axis=1, keepdims=True) dWxh = np.dot(dh, x.T) dWhh = np.dot(dh, self.h.T) dbh = np.sum(dh, axis=1, keepdims=True) # 更新权重和偏置 self.Why -= learning_rate * dWhy self.by -= learning_rate * dby self.Wxh -= learning_rate * dWxh self.Whh -= learning_rate * dWhh self.bh -= learning_rate * dbh 帮写一下用online_shopping_10_cats数据集训练以上模型train函数以及test函数

好的,这里是使用online_shopping_10_cats数据集训练以上模型的train函数以及test函数: ```python import numpy as np import pandas as pd import string from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from sklearn.model_selection import train_test_split # 加载数据集 df = pd.read_csv("online_shopping_10_cats.csv") df = df[["Review Text", "Cat1"]] df = df.dropna() # 数据预处理 stop_words = set(stopwords.words('english') + list(string.punctuation)) def preprocess_text(text): tokens = word_tokenize(text.lower()) tokens = [t for t in tokens if t not in stop_words] return " ".join(tokens) df["Review Text"] = df["Review Text"].apply(preprocess_text) # 划分训练集和测试集 train_texts, test_texts, train_labels, test_labels = train_test_split(df["Review Text"], df["Cat1"], test_size=0.2) # 构建词典 word_to_index = {} index_to_word = {} for i, word in enumerate(set(" ".join(train_texts).split())): word_to_index[word] = i index_to_word[i] = word # 将文本转换为数字序列 def text_to_sequence(text): seq = [] for word in text.split(): seq.append(word_to_index[word]) return seq train_sequences = [text_to_sequence(text) for text in train_texts] test_sequences = [text_to_sequence(text) for text in test_texts] # 将标签转换为数字 label_to_index = {} index_to_label = {} for i, label in enumerate(set(train_labels)): label_to_index[label] = i index_to_label[i] = label train_labels = [label_to_index[label] for label in train_labels] test_labels = [label_to_index[label] for label in test_labels] # 定义 RNN 模型 class RNN: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化参数 self.Wxh = np.random.randn(hidden_size, input_size) * 0.01 # 输入层到隐藏层的权重矩阵 self.Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # 隐藏层到隐藏层的权重矩阵 self.Why = np.random.randn(output_size, hidden_size) * 0.01 # 隐藏层到输出层的权重矩阵 self.bh = np.zeros((hidden_size, 1)) # 隐藏层偏置 self.by = np.zeros((output_size, 1)) # 输出层偏置 # 初始化隐藏状态 self.h = np.zeros((hidden_size, 1)) def forward(self, x): # 更新隐藏状态 self.h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, self.h) + self.bh) # 计算输出 y = np.dot(self.Why, self.h) + self.by # 返回输出和隐藏状态 return y, self.h def backward(self, x, y, target, learning_rate): # 计算输出误差 dy = y - target # 计算隐藏状态误差 dh = np.dot(self.Why.T, dy) * (1 - self.h ** 2) # 计算权重和偏置的梯度 dWhy = np.dot(dy, self.h.T) dby = np.sum(dy, axis=1, keepdims=True) dWxh = np.dot(dh, x.T) dWhh = np.dot(dh, self.h.T) dbh = np.sum(dh, axis=1, keepdims=True) # 更新权重和偏置 self.Why -= learning_rate * dWhy self.by -= learning_rate * dby self.Wxh -= learning_rate * dWxh self.Whh -= learning_rate * dWhh self.bh -= learning_rate * dbh # 训练函数 def train(model, sequences, labels, learning_rate, epochs): for epoch in range(epochs): loss = 0 for i in range(len(sequences)): # 将输入和输出转换为 one-hot 编码 x = np.zeros((len(sequences[i]), model.input_size)) for j, index in enumerate(sequences[i]): x[j, index] = 1 y = np.zeros((model.output_size, 1)) y[labels[i]] = 1 # 前向传播 output, hidden = model.forward(x.T) # 计算损失 loss += np.sum((output - y) ** 2) # 反向传播 model.backward(x.T, output, y, learning_rate) # 输出每个 epoch 的损失 print("Epoch {}/{} loss: {}".format(epoch + 1, epochs, loss / len(sequences))) # 测试函数 def test(model, sequences, labels): correct = 0 for i in range(len(sequences)): # 将输入转换为 one-hot 编码 x = np.zeros((len(sequences[i]), model.input_size)) for j, index in enumerate(sequences[i]): x[j, index] = 1 # 前向传播 output, hidden = model.forward(x.T) # 获取预测结果 prediction = np.argmax(output) # 更新正确预测的数量 if prediction == labels[i]: correct += 1 # 输出准确率 accuracy = correct / len(sequences) print("Accuracy: {}".format(accuracy)) # 实例化 RNN 模型 input_size = len(word_to_index) hidden_size = 64 output_size = len(label_to_index) model = RNN(input_size, hidden_size, output_size) # 训练模型 learning_rate = 0.01 epochs = 10 train(model, train_sequences, train_labels, learning_rate, epochs) # 测试模型 test(model, test_sequences, test_labels) ``` 在训练模型时,我们使用了 online_shopping_10_cats 数据集,并对数据进行了预处理、划分训练集和测试集、构建词典等操作。在训练过程中,我们使用了前向传播和反向传播算法来更新模型的权重和偏置,并输出了每个 epoch 的损失。在测试模型时,我们使用了测试集,计算出了模型的准确率。

相关推荐

import numpy as np # 定义神经网络模型 class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size, learning_rate=0.1): # 初始化权重和偏置 self.weights1 = np.random.randn(input_size, hidden_size) self.bias1 = np.zeros((1, hidden_size)) self.weights2 = np.random.randn(hidden_size, output_size) self.bias2 = np.zeros((1, output_size)) # 学习率 self.learning_rate = learning_rate # 前向传播 def forward(self, x): # 第一层 z1 = np.dot(x, self.weights1) + self.bias1 a1 = np.maximum(0, z1) # ReLU激活函数 # 第二层 z2 = np.dot(a1, self.weights2) + self.bias2 return z2, a1 # 训练模型 def train(self, X, y, epochs): for i in range(epochs): # 前向传播,计算预测值和激活值 y_hat, _ = self.forward(X) # 计算损失函数 loss = np.mean((y_hat - y) ** 2) # 反向传播,更新参数 self.backward(X, y, y_hat) # 输出当前状态 print(f"Epoch {i+1}/{epochs}, Loss: {loss}") # 如果损失函数值小于指定值,退出训练 if loss < 0.001: print("训练完成") break # 反向传播 def backward(self, x, y, y_hat): # 计算损失函数的梯度 delta2 = y_hat - y # 计算第二层的参数梯度 dw2 = np.dot(self.a1.T, delta2) db2 = np.sum(delta2, axis=0, keepdims=True) # 计算第一层的参数梯度 delta1 = np.dot(delta2, self.weights2.T) * (self.a1 > 0) dw1 = np.dot(x.T, delta1) db1 = np.sum(delta1, axis=0, keepdims=True) # 更新权重和偏置 self.weights2 -= self.learning_rate * dw2 self.bias2 -= self.learning_rate * db2 self.weights1 -= self.learning_rate * dw1 self.bias1 -= self.learning_rate * db1 # 预测模型 def predict(self, x): y_hat, _ = self.forward(x) return y_hat[0][0] # 用户输入 input_value = input("请输入模型的输入值: ") x_test = np.array([[float(input_value)]]) # 初始化神经网络模型 model = NeuralNetwork(input_size=1, hidden_size=10, output_size=1, learning_rate=0.1) # 训练模型 X_train = np.array([[1], [1.1], [1.2], [2]]) y_train = np.array([[2.21], [2.431], [2.664], [8]]) model.train(X_train, y_train, epochs=1000) # 预测输出值 y_test = model.predict(x_test) print(f"输入值: {x_test[0][0]}, 输出值: {y_test}")

import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression np.random.seed(10) class Newton(object): def init(self,epochs=50): self.W = None self.epochs = epochs def get_loss(self, X, y, W,b): """ 计算损失 0.5sum(y_pred-y)^2 input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ #print(np.dot(X,W)) loss = 0.5np.sum((y - np.dot(X,W)-b)2) return loss def first_derivative(self,X,y): """ 计算一阶导数g = (y_pred - y)*x input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ y_pred = np.dot(X,self.W) + self.b g = np.dot(X.T, np.array(y_pred - y)) g_b = np.mean(y_pred-y) return g,g_b def second_derivative(self,X,y): """ 计算二阶导数 Hij = sum(X.T[i]X.T[j]) input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:损失函数值 """ H = np.zeros(shape=(X.shape[1],X.shape[1])) H = np.dot(X.T, X) H_b = 1 return H, H_b def fit(self, X, y): """ 线性回归 y = WX + b拟合,牛顿法求解 input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:拟合的线性回归 """ self.W = np.random.normal(size=(X.shape[1])) self.b = 0 for epoch in range(self.epochs): g,g_b = self.first_derivative(X,y) # 一阶导数 H,H_b = self.second_derivative(X,y) # 二阶导数 self.W = self.W - np.dot(np.linalg.pinv(H),g) self.b = self.b - 1/H_bg_b print("itration:{} ".format(epoch), "loss:{:.4f}".format( self.get_loss(X, y , self.W,self.b))) def predict(): """ 需要自己实现的代码 """ pass def normalize(x): return (x - np.min(x))/(np.max(x) - np.min(x)) if name == "main": np.random.seed(2) X = np.random.rand(100,5) y = np.sum(X3 + X**2,axis=1) print(X.shape, y.shape) # 归一化 X_norm = normalize(X) X_train = X_norm[:int(len(X_norm)*0.8)] X_test = X_norm[int(len(X_norm)*0.8):] y_train = y[:int(len(X_norm)0.8)] y_test = y[int(len(X_norm)0.8):] # 牛顿法求解回归问题 newton=Newton() newton.fit(X_train, y_train) y_pred = newton.predict(X_test,y_test) print(0.5np.sum((y_test - y_pred)**2)) reg = LinearRegression().fit(X_train, y_train) y_pred = reg.predict(X_test) print(0.5np.sum((y_test - y_pred)**2)) ——修改代码中的问题,并补全缺失的代码,实现牛顿最优化算法

最新推荐

recommend-type

vit-keras-0.0.11.tar.gz

该资源为vit-keras-0.0.11.tar.gz,欢迎下载使用哦!
recommend-type

5212-微信小程序疫苗预约系统+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

帮我用PHP写一个登录界面

当然可以,创建一个简单的PHP登录页面的基本步骤如下: ```php <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8"> <title>登录页面</title> </head> <body> <h2>用户登录</h2> <form method="post" action="login.php"> <label for="username">用户名:</label><br> <input type="text" id="username" name="us