df.rename(columns = lambda x : x.replace(' ',''),inplace = True) # 原始dataframe中列名中包含空格,需要进行替换 # 删除重复行,保留第一次出现的行 df.drop_duplicates(inplace = True) # 数据类型转换 df['OrderDate'] = pd.to_datetime(df['OrderDate']) df['ShipDate'] = pd.to_datetime(df['ShipDate']) df['RowID'] = df['RowID'].astype('object') df['PostalCode'] = df['PostalCode'].astype('object') # 提取年月日 df['OrderYear'] = df['OrderDate'].dt.year df['OrderMonth'] = df['OrderDate'].dt.month df['OrderDay'] = df['OrderDate'].dt.day df['OrderWeekday'] = df['OrderDate'].dt.weekday + 1 df['OrderYearMonth'] = df['OrderDate'].dt.strftime('%Y-%m') # 计算订单的发货时间 df['ShipDays'] = (df['ShipDate'] - df['OrderDate']).dt.days # 计算成本 df['Cost'] = df['Sales'] - df['Profit'] df.head().请解释这段代码
时间: 2023-09-18 20:16:00 浏览: 88
这段代码是对一个名为 `df` 的 pandas DataFrame 进行数据预处理的操作,具体解释如下:
1. `df.rename(columns = lambda x : x.replace(' ',''),inplace = True)`:将 DataFrame 中所有列名中的空格替换为空,并且将修改直接应用到原 DataFrame 中。
2. `df.drop_duplicates(inplace = True)`:删除原 DataFrame 中重复的行,只保留第一次出现的行,并且将修改直接应用到原 DataFrame 中。
3. `df['OrderDate'] = pd.to_datetime(df['OrderDate'])` 和 `df['ShipDate'] = pd.to_datetime(df['ShipDate'])`:将 `OrderDate` 和 `ShipDate` 这两列转换成 pandas 中的 datetime 类型。
4. `df['RowID'] = df['RowID'].astype('object')` 和 `df['PostalCode'] = df['PostalCode'].astype('object')`:将 `RowID` 和 `PostalCode` 这两列转换成 pandas 中的 object 类型。
5. `df['OrderYear'] = df['OrderDate'].dt.year` 和 `df['OrderMonth'] = df['OrderDate'].dt.month` 等:提取 `OrderDate` 这一列中的年、月、日、星期等信息,并新建相应的列。
6. `df['OrderYearMonth'] = df['OrderDate'].dt.strftime('%Y-%m')`:将 `OrderDate` 这一列中的日期转换成字符串,并只保留年月信息,存放在 `OrderYearMonth` 这一列中。
7. `df['ShipDays'] = (df['ShipDate'] - df['OrderDate']).dt.days`:计算订单的发货时间,即 `ShipDate` 减去 `OrderDate` 的天数差,存放在 `ShipDays` 这一列中。
8. `df['Cost'] = df['Sales'] - df['Profit']`:计算每笔订单的成本,即 `Sales` 减去 `Profit`,存放在 `Cost` 这一列中。
9. `df.head()`:输出处理后的 DataFrame 中前 5 行数据。
阅读全文