给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
时间: 2023-10-03 08:07:47 浏览: 171
这是一个经典的背包问题,可以使用动态规划算法来解决。假设dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值,那么状态转移方程为:
dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi]+vi)
其中max()表示取两者中的最大值,第一项表示不放第i个物品,第二项表示放入第i个物品。当第i个物品的重量大于当前背包容量j时,只能选择不放,则状态转移方程为:
dp[i][j] = dp[i-1][j]
初始化时,dp[0][j]和dp[i][0]均为0,表示没有物品或背包容量为0时价值为0。最终结果为dp[n][C],即前n个物品放入容量为C的背包中获得的最大价值。
时间复杂度为O(nC),需要使用二维数组来存储状态,空间复杂度也为O(nC)。
相关问题
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为c。问应如何选择
给定n种物品和一个背包,每种物品i的重量是wi,其价值为vi,背包的容量为c。我们需要选择哪些物品放入背包,以便背包中物品的总价值最大。
解决这个问题可以使用动态规划的方法。我们定义一个二维数组dp,其中dp[i][j]表示在背包容量为j的情况下,前i种物品的最大总价值。
我们可以通过以下步骤来填充dp数组:
1. 初始化dp数组为0.
2. 从第1种物品开始遍历到第n种物品:
- 对于每一种物品i,遍历背包容量从1到c:
- 如果wi > j,则物品i无法放入背包中,dp[i][j]等于dp[i-1][j].
- 否则,比较物品i放入背包和不放入背包的情况:
- 如果将物品i放入背包,总价值为dp[i-1][j-wi] + vi.
- 如果不放入物品i,总价值为dp[i-1][j].
- 选择其中较大的总价值作为dp[i][j]的值。
3. 返回dp[n][c]作为结果,即表示在背包容量为c的情况下,前n种物品的最大总价值。
这样,我们可以得到最优解。这个算法的时间复杂度是O(n*c),其中n是物品的数量,c是背包的容量。
给定n种物品和一个背包,物品i的重量是wi,其价值为vi,问如何选择装入背包的物品,使
以下是两种解决背包问题的算法:
1. 0/1背包问题
0/1背包问题是指每种物品仅有一件,可以选择放或不放。用动态规划求解时,设v[i][j]表示前i件物品放入容量为j的背包可以获得的最大价值有以下状态转移方程:
v[i][j] = max{v[i-1][j], v[i-1][j-w[i]] + v[i]} (j>=w[i])
其中,w[i]和v[i]分别表示第i件物品的重量和价值。
2. 完全背包问题
完全背包问题是指每种物品有无限件,可以选择放或不放。同样用动态规划求解时,设v[i][j]表示前i件物品放入容量为j的背包可以获得的最大价值,则有以下状态转移方程:
v[i][j] = max{v[i-1][j-k*w[i]] + k*v[i]} (0<=k*w[i]<=j)
其中,w[i]和v[i]仍然表示第i件物品的重量和价值。
阅读全文