0-1背包问题:给定n种物品和一背包。物品i的重量是Wi其价值为Vi,背包的容量为C。编写算法实现选择装入背包的物品,使得装入背包中物品的总价值最大。c++
时间: 2024-12-16 13:14:09 浏览: 10
0-1背包问题是一个经典的动态规划问题。在C++中,可以使用一个二维数组dp来存储从第0到第i个物品,背包容量从0到j的最大价值。以下是一个简单的贪心策略和动态规划解决方案:
```cpp
#include <vector>
using namespace std;
int knapSack(int W, vector<int>& wt, vector<int>& val, int n) {
vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));
for (int i = 1; i <= n; ++i) {
for (int w = 1; w <= W; ++w) {
if (wt[i - 1] <= w) { // 如果物品i的重量小于等于当前背包容量
dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - wt[i - 1]] + val[i - 1]); // 选择包含或不包含物品i
} else {
dp[i][w] = dp[i - 1][w]; // 如果物品i超出了背包容量,就不选
}
}
}
return dp[n][W]; // 返回背包所能装下的最大价值
}
```
在这个代码中,`knapSack`函数接收背包容量W、物品重量数组wt、物品价值数组val和物品数量n作为参数。内部的两个嵌套循环分别用于遍历每个物品和每个可能的背包容量。通过比较不包含当前物品的情况和包含当前物品的情况,找到最大的价值。
阅读全文