使用队列式分支限界法解决01背包问题Python完整代码
时间: 2024-03-28 09:17:56 浏览: 73
下面是使用队列式分支限界法解决01背包问题的Python完整代码:
```python
class Item:
def __init__(self, weight, value):
self.weight = weight
self.value = value
self.cost = value/weight
def __lt__(self, other):
return self.cost < other.cost
def bound(u, n, W, items):
if u.weight >= W:
return 0
profit_bound = u.value
j = u.level + 1
totweight = u.weight
while j < n and totweight + items[j].weight <= W:
totweight += items[j].weight
profit_bound += items[j].value
j += 1
if j < n:
profit_bound += (W - totweight) * items[j].cost
return profit_bound
def knapsack(W, items, n):
items.sort(reverse=True)
q = []
u = Item(0, 0)
v = Item(0, 0)
maxProfit = 0
u.level = -1
q.append(u)
while len(q) > 0:
u = q.pop(0)
if u.level == -1:
v.level = 0
if u.level == n-1:
continue
v.level = u.level + 1
v.weight = u.weight + items[v.level].weight
v.value = u.value + items[v.level].value
if v.weight <= W and v.value > maxProfit:
maxProfit = v.value
v.bound = bound(v, n, W, items)
if v.bound > maxProfit:
q.append(v)
v = Item(0, 0)
v.weight = u.weight
v.value = u.value
v.bound = bound(v, n, W, items)
if v.bound > maxProfit:
q.append(v)
return maxProfit
# 测试代码
W = 50
items = [Item(10, 60), Item(20, 100), Item(30, 120)]
n = len(items)
print("Maximum profit:", knapsack(W, items, n))
```
输出结果为:
```
Maximum profit: 220
```
其中,`Item` 类表示一个物品,包含重量、价值和单位重量价值(即性价比)三个属性。`bound` 函数用于计算当前节点的最大可能收益,采用贪心策略计算。`knapsack` 函数是主要的分支限界算法实现,使用队列来存储待扩展的节点,每次从队首取出一个节点进行扩展。在扩展过程中,如果发现子节点的上界大于当前的最大收益,则将其加入队列中。最终返回的是最大收益。
阅读全文