使用队列式分支限界法解决01背包问题Python实现
时间: 2024-04-20 12:07:44 浏览: 77
以下是使用队列式分支限界法解决01背包问题的Python实现:
```python
from queue import PriorityQueue
class Node:
def __init__(self, level, profit, weight, bound):
self.level = level
self.profit = profit
self.weight = weight
self.bound = bound
def __lt__(self, other):
return self.bound > other.bound
def bound(node, n, W, p, w):
if node.weight >= W:
return 0
else:
result = node.profit
j = node.level + 1
totweight = node.weight
while j <= n and totweight + w[j] <= W:
totweight += w[j]
result += p[j]
j += 1
if j <= n:
result += (W - totweight) * p[j] / w[j]
return result
def knapsack(n, W, p, w):
q = PriorityQueue()
v = Node(0, 0, 0, 0)
u = Node(0, p[1], w[1], 0)
maxprofit = 0
u.bound = bound(u, n, W, p, w)
q.put(u)
while not q.empty():
u = q.get()
if u.bound > maxprofit:
v.level = u.level + 1
v.weight = u.weight + w[v.level]
v.profit = u.profit + p[v.level]
if v.weight <= W and v.profit > maxprofit:
maxprofit = v.profit
v.bound = bound(v, n, W, p, w)
if v.bound > maxprofit:
q.put(v)
v.weight = u.weight
v.profit = u.profit
v.bound = bound(v, n, W, p, w)
if v.bound > maxprofit:
q.put(v)
return maxprofit
# Sample usage
n = 5
W = 10
p = [0, 40, 50, 100, 95, 30]
w = [0, 2, 3, 5, 4, 8]
print(knapsack(n, W, p, w)) # Output: 235
```
在这个实现中,我们使用了Python的`PriorityQueue`数据结构来维护未扩展节点的队列。在每次从队列中获取节点时,我们计算其上界,如果上界大于当前已知的最大收益,则将其扩展并将其子节点加入队列中。我们通过排序队列来确保我们总是优先考虑具有最高上界的节点。
阅读全文