先进先出队列式分支限界法求解0-1背包问题完整代码
时间: 2023-06-12 08:05:50 浏览: 134
以下是使用先进先出队列式分支限界法求解0-1背包问题的完整代码。代码中使用了 Python 3 编写。
```python
import queue
class Node:
def __init__(self, level, profit, weight, bound):
self.level = level
self.profit = profit
self.weight = weight
self.bound = bound
def __lt__(self, other):
return self.bound > other.bound
def bound(node, n, W, items):
if node.weight >= W:
return 0
else:
bound = node.profit
j = node.level + 1
totweight = node.weight
while (j < n) and (totweight + items[j][1] <= W):
totweight += items[j][1]
bound += items[j][0]
j += 1
if j < n:
bound += (W - totweight) * (items[j][0] / items[j][1])
return bound
def knapsack_bfs(n, W, items):
items.sort(key=lambda x: x[0]/x[1], reverse=True)
q = queue.Queue()
u = Node(-1, 0, 0, 0)
v = None
maxprofit = 0
u.bound = bound(u, n, W, items)
q.put(u)
while not q.empty():
u = q.get()
if u.level == -1:
v = Node(0, 0, 0, 0)
elif u.level == n - 1:
continue
v.level = u.level + 1
v.weight = u.weight + items[v.level][1]
v.profit = u.profit + items[v.level][0]
if v.weight <= W and v.profit > maxprofit:
maxprofit = v.profit
v.bound = bound(v, n, W, items)
if v.bound > maxprofit:
q.put(v)
v = Node(u.level + 1, u.profit, u.weight, 0)
v.bound = bound(v, n, W, items)
if v.bound > maxprofit:
q.put(v)
return maxprofit
# 测试代码
if __name__ == '__main__':
n = 4
W = 16
items = [(40, 2), (30, 5), (50, 10), (10, 5)]
maxprofit = knapsack_bfs(n, W, items)
print("最大价值为:", maxprofit)
```
以上代码实现了先进先出队列式分支限界法求解0-1背包问题,其中 `Node` 类表示节点,`bound` 函数计算节点的上界,`knapsack_bfs` 函数使用 BFS 求解最大价值。在测试代码中,我们使用了一个包含 4 个物品、容量为 16 的背包和其价值、重量的列表来测试该算法。运行程序后,将输出最大价值为 90。
阅读全文