解释这段verilog语言的代码: // rowsum accumulator wire [`E203_XLEN-1:0] rowsum_acc_r; wire [`E203_XLEN-1:0] rowsum_acc_nxt; wire [`E203_XLEN-1:0] rowsum_acc_adder; wire rowsum_acc_ena; wire rowsum_acc_set; wire rowsum_acc_flg; wire nice_icb_cmd_valid_rowsum; wire [`E203_XLEN-1:0] rowsum_res; assign rowsum_acc_set = rcv_data_buf_valid & (rcv_data_buf_idx == {ROWBUF_IDX_W{1'b0}}); assign rowsum_acc_flg = rcv_data_buf_valid & (rcv_data_buf_idx != {ROWBUF_IDX_W{1'b0}}); assign rowsum_acc_adder = rcv_data_buf + rowsum_acc_r; assign rowsum_acc_ena = rowsum_acc_set | rowsum_acc_flg; assign rowsum_acc_nxt = ({`E203_XLEN{rowsum_acc_set}} & rcv_data_buf) | ({`E203_XLEN{rowsum_acc_flg}} & rowsum_acc_adder) ; sirv_gnrl_dfflr #(`E203_XLEN) rowsum_acc_dfflr (rowsum_acc_ena, rowsum_acc_nxt, rowsum_acc_r, nice_clk, nice_rst_n); assign rowsum_done = state_is_rowsum & nice_rsp_hsked; assign rowsum_res = rowsum_acc_r; // rowsum finishes when the last acc data is added to rowsum_acc_r assign nice_rsp_valid_rowsum = state_is_rowsum & (rcv_data_buf_idx == clonum) & ~rowsum_acc_flg; // nice_icb_cmd_valid sets when rcv_data_buf_idx is not full in LBUF assign nice_icb_cmd_valid_rowsum = state_is_rowsum & (rcv_data_buf_idx < clonum) & ~rowsum_acc_flg;

时间: 2023-10-10 19:08:52 浏览: 38
这段Verilog代码实现了一个行累加器(rowsum accumulator),其功能是将接收到的数据进行累加,并在最后将计算出的结果输出。 具体来说,该代码定义了一些wire类型的信号,包括输入数据、累加器当前值、累加器输出值、累加器使能信号等。通过assign语句将这些信号进行连接和赋值,从而实现累加器的计算和控制逻辑。其中,使用了sirv_gnrl_dfflr模块实现了一个寄存器,用于存储累加器的当前值。 该代码还定义了一些状态标志和状态转移条件,用于控制累加器的启动和停止。例如,通过判断接收缓存区中的数据是否满足条件,来确定累加器是否需要启动或停止。同时,该代码还定义了输出信号,用于将累加器的结果输出。 总之,该代码是一个用Verilog实现的行累加器模块,其主要功能是对输入数据进行累加并输出结果。
相关问题

wire [`E203_XLEN-1:0] rowsum_acc_r; wire [`E203_XLEN-1:0] rowsum_acc_nxt; wire [`E203_XLEN-1:0] rowsum_acc_adder; wire rowsum_acc_ena; wire rowsum_acc_set; wire rowsum_acc_flg; wire nice_icb_cmd_valid_rowsum; wire [`E203_XLEN-1:0] rowsum_res; assign rowsum_acc_set = rcv_data_buf_valid & (rcv_data_buf_idx == {ROWBUF_IDX_W{1'b0}}); assign rowsum_acc_flg = rcv_data_buf_valid & (rcv_data_buf_idx != {ROWBUF_IDX_W{1'b0}}); assign rowsum_acc_adder = rcv_data_buf + rowsum_acc_r; assign rowsum_acc_ena = rowsum_acc_set | rowsum_acc_flg; assign rowsum_acc_nxt = ({`E203_XLEN{rowsum_acc_set}} & rcv_data_buf) | ({`E203_XLEN{rowsum_acc_flg}} & rowsum_acc_adder) ; sirv_gnrl_dfflr #(`E203_XLEN) rowsum_acc_dfflr (rowsum_acc_ena, rowsum_acc_nxt, rowsum_acc_r, nice_clk, nice_rst_n); assign rowsum_done = state_is_rowsum & nice_rsp_hsked; assign rowsum_res = rowsum_acc_r; // rowsum finishes when the last acc data is added to rowsum_acc_r assign nice_rsp_valid_rowsum = state_is_rowsum & (rcv_data_buf_idx == clonum) & ~rowsum_acc_flg; // nice_icb_cmd_valid sets when rcv_data_buf_idx is not full in LBUF assign nice_icb_cmd_valid_rowsum = state_is_rowsum & (rcv_data_buf_idx < clonum) & ~rowsum_acc_flg;分析这段

这段代码是一段 Verilog HDL 代码,主要是实现了一个用于计算矩阵行和的逻辑。下面是对代码的分析: 1. 第一行定义了一个名为 rowsum_acc_r 的 wire 变量,该变量是一个 `E203_XLEN` 位的向量,作为行和累加器的寄存器。 2. 第二行定义了一个名为 rowsum_acc_nxt 的 wire 变量,该变量也是一个 `E203_XLEN` 位的向量,作为行和累加器的下一个状态。 3. 第三行定义了一个名为 rowsum_acc_adder 的 wire 变量,该变量也是一个 `E203_XLEN` 位的向量,用于将当前接收的数据加到累加器中。 4. 第四行定义了一个名为 rowsum_acc_ena 的 wire 变量,该变量用于控制累加器的使能,当收到数据时使能,否则不使能。 5. 第五行定义了一个名为 rowsum_acc_set 的 wire 变量,该变量用于判断当前是否需要设置 rowsum_acc_r 的值,当接收到第一条数据时设置。 6. 第六行定义了一个名为 rowsum_acc_flg 的 wire 变量,该变量用于判断当前是否需要将当前接收的数据加到累加器中。 7. 第七行定义了一个名为 nice_icb_cmd_valid_rowsum 的 wire 变量,该变量用于控制是否发送指令请求,当 rcv_data_buf_idx 小于 clonum 且 rowsum_acc_flg 为假时,发送指令请求。 8. 第八行定义了一个名为 rowsum_res 的 wire 变量,该变量是一个 `E203_XLEN` 位的向量,用于保存计算结果,即矩阵行和。 9. 第九行是对变量 rowsum_acc_set 的赋值,当 rcv_data_buf_valid 为真且 rcv_data_buf_idx 为 0 时,rowsum_acc_set 被置为 1。 10. 第十行是对变量 rowsum_acc_flg 的赋值,当 rcv_data_buf_valid 为真且 rcv_data_buf_idx 不为 0 时,rowsum_acc_flg 被置为 1。 11. 第十一行是对变量 rowsum_acc_adder 的赋值,将当前接收的数据 rcv_data_buf 加到 rowsum_acc_r 中。 12. 第十二行是对变量 rowsum_acc_ena 的赋值,当 rowsum_acc_set 或 rowsum_acc_flg 为真时,rowsum_acc_ena 被置为 1。 13. 第十三行是对变量 rowsum_acc_nxt 的赋值,根据 rowsum_acc_set 和 rowsum_acc_flg 的值计算 rowsum_acc_nxt,即将当前接收的数据加到 rowsum_acc_r 中或者保持 rowsum_acc_r 不变。 14. 第十四行是一个寄存器模块,使用 sirv_gnrl_dfflr 模块实现,用于存储 rowsum_acc_r 的值。 15. 第十五行是对变量 rowsum_done 的赋值,当状态为 state_is_rowsum 且收到响应时,rowsum_done 被置为 1。 16. 第十六行是对变量 rowsum_res 的赋值,将 rowsum_acc_r 的值赋给 rowsum_res。 17. 第十七行是对变量 nice_rsp_valid_rowsum 的赋值,当状态为 state_is_rowsum,接收到的数据为最后一个数据时,且 rowsum_acc_flg 为假时,nice_rsp_valid_rowsum 被置为 1。

哪行实现了乘法?wire [E203_XLEN-1:0] rowprod_acc_r;wire [E203_XLEN-1:0] rowprod_acc_nxt;wire [E203_XLEN-1:0] rowprod_acc_multiplier;wire rowprod_acc_ena;wire rowprod_acc_set;wire rowprod_acc_flg;wire nice_icb_cmd_valid_rowprod;wire [E203_XLEN-1:0] rowprod_res;assign rowprod_acc_set = rcv_data_buf_valid & (rcv_data_buf_idx == {ROWBUF_IDX_W{1'b0}});assign rowprod_acc_flg = rcv_data_buf_valid & (rcv_data_buf_idx != {ROWBUF_IDX_W{1'b0}});assign rowprod_acc_multiplier = rcv_data_buf & rowprod_acc_r;assign rowprod_acc_ena = rowprod_acc_set | rowprod_acc_flg;assign rowprod_acc_nxt = ({E203_XLEN{rowprod_acc_set}} & rcv_data_buf) | ({E203_XLEN{rowprod_acc_flg}} & rowprod_acc_multiplier);sirv_gnrl_dfflr #(`E203_XLEN) rowprod_acc_dfflr (rowprod_acc_ena, rowprod_acc_nxt, rowprod_acc_r, nice_clk, nice_rst_n);assign rowprod_done = state_is_rowprod & nice_rsp_hsked;assign rowprod_res = rowprod_acc_r;assign nice_rsp_valid_rowprod = state_is_rowprod & (rcv_data_buf_idx == clonum) & ~rowprod_acc_flg;assign nice_icb_cmd_valid_rowprod = state_is_rowprod & (rcv_data_buf_idx < clonum) & ~rowprod_acc_flg;

这段代码是使用 Verilog HDL 实现的,并且涉及乘法运算。具体实现的是一个行乘积器(rowprod_acc),其中包括乘法器(rowprod_acc_multiplier)和累加器(rowprod_acc_r)。在代码中,通过 assign 语句将输入数据(rcv_data_buf)和累加器的结果进行乘法运算,并将结果存储在 rowprod_acc_multiplier 中。然后使用 rowprod_acc_r 进行累加操作,并将结果存储在 rowprod_acc_r 中。最后,通过 assign 语句将 rowprod_acc_r 的值赋给 rowprod_res,作为行乘积器的输出。

相关推荐

最新推荐

recommend-type

EDA/PLD中的Verilog HDL的wire和tri线网

用于连接单元的连线是最常见的线网类型。...wire (或 tri) 0 1 x z0 0 x x 01 x 1 x 1x x x x xz 0 1 x z下面是一个具体实例:assign Cla = Pla & Sla;. . . assign Cla = Pla ^ Sla;在这个实例中,Cla
recommend-type

verilog_代码编写软件UE_高亮

今天有用UE查看verilog程序,下载的UE是破解版的,打开后灰蒙蒙的一片,很不爽的,于是搜索一番,下面是一段用于verilog在UE中高亮显示的程序,可以用的。以备后用。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):