l = len(P) mp = np.zeros((1, l), 'float64') k_matrix = np.zeros((l, l)) for k in range(l): tmp = P[k] f_matrix = np.zeros((l, l)) for i in range(l): for j in range(l): tmp_ij = py_intersect(P[i], P[j]) if not tmp_ij: k_matrix[i][j] = 1 if tmp_ij == tmp: f_matrix[i][j] = 1 mp[0][k] = sum(sum(np.dot(mp1.T, mp2) * f_matrix)) k = sum(sum(np.dot(mp1.T, mp2) * k_matrix)) mp = mp / (1 - k) return mp, k
时间: 2023-05-25 20:02:23 浏览: 95
python中numpy.zeros(np.zeros)的使用方法
5星 · 资源好评率100%
A:这段代码的功能是计算一个字符串列表 P 中每个字符串的矩阵匹配概率(mp)和字符串间的相似度(k)。
具体来说,它首先通过 len(P) 函数获取 P 的长度,并创建一个初始值为0的大小为 (1, l) 的浮点型矩阵 mp 以及一个大小为 (l, l) 的零矩阵 k_matrix。
然后,它利用两层 for 循环分别遍历 P 中所有元素以及两两元素之间的组合,并根据 py_intersect 函数的输出记录 pm 和 k 矩阵中的对应位置的值。其中,py_intersect 函数用于计算两个字符串的交集,并返回交集。如果交集不存在,则将 k_matrix 中对应的位置赋值为 1。
接下来,它根据公式计算 mp 和 k 矩阵的值,并将 mp 用 k 进行归一化处理,最后返回计算出的 mp 和 k。
阅读全文