l = len(P) mp = np.zeros((1, l), 'float64') k_matrix = np.zeros((l, l)) for k in range(l): tmp = P[k] f_matrix = np.zeros((l, l)) for i in range(l): for j in range(l): tmp_ij = py_intersect(P[i], P[j]) if not tmp_ij: k_matrix[i][j] = 1 if tmp_ij == tmp: f_matrix[i][j] = 1 mp[0][k] = sum(sum(np.dot(mp1.T, mp2) * f_matrix)) k = sum(sum(np.dot(mp1.T, mp2) * k_matrix)) mp = mp / (1 - k) return mp, k
时间: 2023-05-25 09:02:23 浏览: 98
A:这段代码的功能是计算一个字符串列表 P 中每个字符串的矩阵匹配概率(mp)和字符串间的相似度(k)。
具体来说,它首先通过 len(P) 函数获取 P 的长度,并创建一个初始值为0的大小为 (1, l) 的浮点型矩阵 mp 以及一个大小为 (l, l) 的零矩阵 k_matrix。
然后,它利用两层 for 循环分别遍历 P 中所有元素以及两两元素之间的组合,并根据 py_intersect 函数的输出记录 pm 和 k 矩阵中的对应位置的值。其中,py_intersect 函数用于计算两个字符串的交集,并返回交集。如果交集不存在,则将 k_matrix 中对应的位置赋值为 1。
接下来,它根据公式计算 mp 和 k 矩阵的值,并将 mp 用 k 进行归一化处理,最后返回计算出的 mp 和 k。
相关问题
train_data = np.asarray(np.zeros((k, 0))) train_label = np.mat(np.zeros((1, 0), int))
These lines of code initialize two variables, `train_data` and `train_label`, with zero values.
`train_data` is a NumPy array with `k` rows and 0 columns. This means that it is an empty array with `k` rows that will eventually be filled with training data.
`train_label` is a NumPy matrix with 1 row and 0 columns, initialized with integer values of zero. This means that it is an empty matrix with one row that will eventually be filled with training labels.
These variables are likely part of a larger machine learning algorithm that requires training data and labels to be initialized before they are collected from a dataset.
解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv
这段Python代码是KalmanFilter类的初始化方法。在这个方法中,首先会检查dim_x、dim_z和dim_u是否符合要求,如果不符合就会抛出ValueError异常。然后会根据参数的值初始化KalmanFilter对象的各个属性,包括状态量的维度dim_x、观测量的维度dim_z、控制量的维度dim_u。初始化时,状态量x被初始化为一个dim_x行1列的零向量,不确定性协方差P被初始化为dim_x阶单位矩阵,过程不确定性Q也被初始化为dim_x阶单位矩阵。控制转移矩阵B、状态转移矩阵F、测量函数H、状态不确定性R、过程-测量交叉相关M、增长记忆控制参数_alpha_sq、测量残差z、卡尔曼增益K、残差y、系统不确定性S和其逆矩阵SI等都被初始化为相应的大小的零矩阵或数组。这个类还包含一个求逆矩阵的方法inv。
阅读全文