javacv识别车牌实现
时间: 2023-09-08 16:11:08 浏览: 183
使用JavaCV识别车牌可以分为以下几个步骤:
1. 加载图像:使用OpenCV加载车牌图像。
2. 车牌定位:使用图像处理技术定位车牌区域。一般的方法是使用形态学处理和轮廓检测。
3. 车牌字符分割:使用垂直投影法或者基于连通域的方法对车牌字符进行分割。
4. 车牌字符识别:使用OCR技术对分割出来的字符进行识别。常用的OCR引擎有Tesseract-OCR和AipOcr等。
以下是一个简单的代码示例:
```java
import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_highgui.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
public class LicensePlateRecognizer {
public static void main(String[] args) {
// 读取车牌图像
Mat src = imread("license_plate.jpg");
// 车牌定位
Mat gray = new Mat();
cvtColor(src, gray, COLOR_BGR2GRAY);
Mat binary = new Mat();
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, new Size(3, 3));
morphologyEx(binary, binary, MORPH_OPEN, kernel);
Mat contours = new Mat();
findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Rect roi = null;
for (int i = 0; i < contours.size().height(); i++) {
Rect rect = boundingRect(contours.row(i));
if (rect.width() > rect.height() * 2 && rect.width() < src.size().width() * 0.8 && rect.height() > src.size().height() * 0.1) {
roi = rect;
break;
}
}
if (roi == null) {
System.out.println("未找到车牌");
return;
}
Mat plate = new Mat(src, roi);
// 车牌字符分割
cvtColor(plate, gray, COLOR_BGR2GRAY);
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Mat result = new Mat();
int i = 0;
for (int j = 0; j < contours.size().height(); j++) {
Rect rect = boundingRect(contours.row(j));
if (rect.width() > 10 && rect.height() > 20) {
Mat character = new Mat(gray, rect);
resize(character, character, new Size(20, 20));
character.convertTo(character, CV_32FC1);
result.push_back(character.reshape(1, 1));
}
}
// 车牌字符识别
String[] labels = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"};
Mat labelsMat = new Mat(labels.length, 1, CV_32FC1);
for (int j = 0; j < labels.length; j++) {
labelsMat.put(j, 0, j);
}
KNearest knn = KNearest.create();
knn.train(result, ROW_SAMPLE, labelsMat);
Mat test = new Mat();
resize(gray, test, new Size(120, 30));
test.convertTo(test, CV_32FC1);
Mat response = new Mat();
knn.findNearest(test.reshape(1, 1), 3, response);
int label = (int) response.get(0, 0)[0];
System.out.println("识别结果:" + labels[label]);
}
}
```
这是一个简单的识别车牌的示例,实际应用中还需要考虑更多的情况,比如光照条件、车牌颜色等因素对识别的影响。
阅读全文