设惯性系为基坐标系Ω1,某运动物体的本体坐标系为Ω2,该物体通过3次欧拉转动使原始本体坐标系变为新的坐标系Ω3 c语言实现
时间: 2023-11-24 17:05:34 浏览: 104
假设原始本体坐标系Ω2相对于基坐标系Ω1的欧拉转动顺序为yaw-pitch-roll,即绕z轴旋转yaw角度,绕y轴旋转pitch角度,绕x轴旋转roll角度,则变换矩阵为:
```
R1 = Rz(yaw) * Ry(pitch) * Rx(roll)
```
其中
```
Rz(yaw) = [ cos(yaw) -sin(yaw) 0 ]
[ sin(yaw) cos(yaw) 0 ]
[ 0 0 1 ]
Ry(pitch) = [ cos(pitch) 0 sin(pitch) ]
[ 0 1 0 ]
[ -sin(pitch) 0 cos(pitch) ]
Rx(roll) = [ 1 0 0 ]
[ 0 cos(roll) -sin(roll) ]
[ 0 sin(roll) cos(roll) ]
```
然后,假设新的本体坐标系Ω3相对于原始本体坐标系Ω2的欧拉转动顺序为yaw'-pitch'-roll',变换矩阵为:
```
R2 = Rz(yaw') * Ry(pitch') * Rx(roll')
```
将变换矩阵相乘即可得到从基坐标系Ω1到新的本体坐标系Ω3的变换矩阵:
```
R = R2 * R1
```
C语言代码实现如下:
```c
#include <math.h>
typedef struct {
double x, y, z;
} Vector3;
typedef struct {
double m[3][3];
} Matrix3x3;
// 绕x轴旋转roll角度的旋转矩阵
Matrix3x3 Rx(double roll) {
Matrix3x3 R;
double cos_a = cos(roll);
double sin_a = sin(roll);
R.m[0][0] = 1.0;
R.m[0][1] = 0.0;
R.m[0][2] = 0.0;
R.m[1][0] = 0.0;
R.m[1][1] = cos_a;
R.m[1][2] = -sin_a;
R.m[2][0] = 0.0;
R.m[2][1] = sin_a;
R.m[2][2] = cos_a;
return R;
}
// 绕y轴旋转pitch角度的旋转矩阵
Matrix3x3 Ry(double pitch) {
Matrix3x3 R;
double cos_a = cos(pitch);
double sin_a = sin(pitch);
R.m[0][0] = cos_a;
R.m[0][1] = 0.0;
R.m[0][2] = sin_a;
R.m[1][0] = 0.0;
R.m[1][1] = 1.0;
R.m[1][2] = 0.0;
R.m[2][0] = -sin_a;
R.m[2][1] = 0.0;
R.m[2][2] = cos_a;
return R;
}
// 绕z轴旋转yaw角度的旋转矩阵
Matrix3x3 Rz(double yaw) {
Matrix3x3 R;
double cos_a = cos(yaw);
double sin_a = sin(yaw);
R.m[0][0] = cos_a;
R.m[0][1] = -sin_a;
R.m[0][2] = 0.0;
R.m[1][0] = sin_a;
R.m[1][1] = cos_a;
R.m[1][2] = 0.0;
R.m[2][0] = 0.0;
R.m[2][1] = 0.0;
R.m[2][2] = 1.0;
return R;
}
// 从基坐标系到新的本体坐标系的变换矩阵
Matrix3x3 transform(Vector3 angles) {
double roll = angles.x;
double pitch = angles.y;
double yaw = angles.z;
Matrix3x3 R1 = Rz(yaw) * Ry(pitch) * Rx(roll);
double roll_prime = 0.0; // 新的本体坐标系绕x轴旋转的角度
double pitch_prime = 0.0; // 新的本体坐标系绕y轴旋转的角度
double yaw_prime = 0.0; // 新的本体坐标系绕z轴旋转的角度
Matrix3x3 R2 = Rz(yaw_prime) * Ry(pitch_prime) * Rx(roll_prime);
Matrix3x3 R = R2 * R1; // 从基坐标系到新的本体坐标系的变换矩阵
return R;
}
```
其中,`Vector3`表示三维向量,`Matrix3x3`表示3x3的矩阵。`Rx`、`Ry`、`Rz`分别表示绕x、y、z轴旋转的旋转矩阵,`transform`函数即为从基坐标系到新的本体坐标系的变换矩阵计算函数。
阅读全文